修改requirements.txt文件,添加main函数判断
This commit is contained in:
parent
d7e6706623
commit
1e25f418ae
@ -95,53 +95,54 @@ class My_Dataset(Dataset):
|
|||||||
return x, y
|
return x, y
|
||||||
|
|
||||||
|
|
||||||
learning_rate = 5e-2
|
if __name__ == "__main__":
|
||||||
num_epochs = 10
|
learning_rate = 5e-2
|
||||||
batch_size = 1024
|
num_epochs = 10
|
||||||
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
batch_size = 1024
|
||||||
|
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||||
|
|
||||||
dataset = My_Dataset()
|
dataset = My_Dataset()
|
||||||
dataloader = DataLoader(
|
dataloader = DataLoader(
|
||||||
dataset=dataset,
|
dataset=dataset,
|
||||||
batch_size=batch_size,
|
batch_size=batch_size,
|
||||||
shuffle=True,
|
shuffle=True,
|
||||||
num_workers=14,
|
num_workers=14,
|
||||||
pin_memory=True,
|
pin_memory=True,
|
||||||
)
|
|
||||||
|
|
||||||
model = Model_2_1().to(device)
|
|
||||||
criterion = My_BCELoss()
|
|
||||||
optimizer = My_optimizer(model.parameters(), lr=learning_rate)
|
|
||||||
|
|
||||||
for epoch in range(num_epochs):
|
|
||||||
total_epoch_loss = 0
|
|
||||||
total_epoch_pred = 0
|
|
||||||
total_epoch_target = 0
|
|
||||||
for index, (x, targets) in tqdm(enumerate(dataloader), total=len(dataloader)):
|
|
||||||
optimizer.zero_grad()
|
|
||||||
x = x.to(device).to(dtype=torch.float32)
|
|
||||||
targets = targets.to(device).to(dtype=torch.float32)
|
|
||||||
x = x.unsqueeze(1)
|
|
||||||
y_pred = model(x)
|
|
||||||
loss = criterion(y_pred, targets)
|
|
||||||
total_epoch_loss += loss.item()
|
|
||||||
total_epoch_target += targets.sum().item()
|
|
||||||
total_epoch_pred += y_pred.sum().item()
|
|
||||||
|
|
||||||
loss.backward()
|
|
||||||
optimizer.step()
|
|
||||||
|
|
||||||
print(
|
|
||||||
f"Epoch {epoch + 1}/{num_epochs}, Loss: {total_epoch_loss}, Acc: {1 - abs(total_epoch_pred - total_epoch_target) / total_epoch_target}"
|
|
||||||
)
|
)
|
||||||
|
|
||||||
with torch.no_grad():
|
model = Model_2_1().to(device)
|
||||||
test_data = (np.array([[2]]) - dataset.min_x) / (dataset.max_x - dataset.min_x)
|
criterion = My_BCELoss()
|
||||||
test_data = Variable(
|
optimizer = My_optimizer(model.parameters(), lr=learning_rate)
|
||||||
torch.tensor(test_data, dtype=torch.float64), requires_grad=False
|
|
||||||
).to(device)
|
for epoch in range(num_epochs):
|
||||||
predicted = model(test_data).to("cpu")
|
total_epoch_loss = 0
|
||||||
print(
|
total_epoch_pred = 0
|
||||||
f"Model weights: {model.linear.weight.item()}, bias: {model.linear.bias.item()}"
|
total_epoch_target = 0
|
||||||
)
|
for index, (x, targets) in tqdm(enumerate(dataloader), total=len(dataloader)):
|
||||||
print(f"Prediction for test data: {predicted.item()}")
|
optimizer.zero_grad()
|
||||||
|
x = x.to(device).to(dtype=torch.float32)
|
||||||
|
targets = targets.to(device).to(dtype=torch.float32)
|
||||||
|
x = x.unsqueeze(1)
|
||||||
|
y_pred = model(x)
|
||||||
|
loss = criterion(y_pred, targets)
|
||||||
|
total_epoch_loss += loss.item()
|
||||||
|
total_epoch_target += targets.sum().item()
|
||||||
|
total_epoch_pred += y_pred.sum().item()
|
||||||
|
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
print(
|
||||||
|
f"Epoch {epoch + 1}/{num_epochs}, Loss: {total_epoch_loss}, Acc: {1 - abs(total_epoch_pred - total_epoch_target) / total_epoch_target}"
|
||||||
|
)
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
test_data = (np.array([[2]]) - dataset.min_x) / (dataset.max_x - dataset.min_x)
|
||||||
|
test_data = Variable(
|
||||||
|
torch.tensor(test_data, dtype=torch.float64), requires_grad=False
|
||||||
|
).to(device)
|
||||||
|
predicted = model(test_data).to("cpu")
|
||||||
|
print(
|
||||||
|
f"Model weights: {model.linear.weight.item()}, bias: {model.linear.bias.item()}"
|
||||||
|
)
|
||||||
|
print(f"Prediction for test data: {predicted.item()}")
|
||||||
|
101
Lab1/code/2.2.py
101
Lab1/code/2.2.py
@ -38,56 +38,57 @@ class My_Dataset(Dataset):
|
|||||||
return x, y
|
return x, y
|
||||||
|
|
||||||
|
|
||||||
learning_rate = 5e-2
|
if __name__ == "__main__":
|
||||||
num_epochs = 10
|
learning_rate = 5e-2
|
||||||
batch_size = 1024
|
num_epochs = 10
|
||||||
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
batch_size = 1024
|
||||||
|
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||||
|
|
||||||
dataset = My_Dataset()
|
dataset = My_Dataset()
|
||||||
dataloader = DataLoader(
|
dataloader = DataLoader(
|
||||||
dataset=dataset,
|
dataset=dataset,
|
||||||
batch_size=batch_size,
|
batch_size=batch_size,
|
||||||
shuffle=True,
|
shuffle=True,
|
||||||
num_workers=14,
|
num_workers=14,
|
||||||
pin_memory=True,
|
pin_memory=True,
|
||||||
)
|
|
||||||
|
|
||||||
model = Model_2_2().to(device)
|
|
||||||
criterion = nn.BCELoss()
|
|
||||||
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
|
|
||||||
|
|
||||||
for epoch in range(num_epochs):
|
|
||||||
total_epoch_loss = 0
|
|
||||||
total_epoch_pred = 0
|
|
||||||
total_epoch_target = 0
|
|
||||||
for index, (x, targets) in tqdm(enumerate(dataloader), total=len(dataloader)):
|
|
||||||
optimizer.zero_grad()
|
|
||||||
|
|
||||||
x = x.to(device)
|
|
||||||
targets = targets.to(device)
|
|
||||||
|
|
||||||
x = x.unsqueeze(1)
|
|
||||||
targets = targets.unsqueeze(1)
|
|
||||||
y_pred = model(x)
|
|
||||||
loss = criterion(y_pred, targets)
|
|
||||||
total_epoch_loss += loss.item()
|
|
||||||
total_epoch_target += targets.sum().item()
|
|
||||||
total_epoch_pred += y_pred.sum().item()
|
|
||||||
|
|
||||||
loss.backward()
|
|
||||||
optimizer.step()
|
|
||||||
|
|
||||||
print(
|
|
||||||
f"Epoch {epoch + 1}/{num_epochs}, Loss: {total_epoch_loss}, Acc: {1 - abs(total_epoch_pred - total_epoch_target) / total_epoch_target}"
|
|
||||||
)
|
)
|
||||||
|
|
||||||
with torch.no_grad():
|
model = Model_2_2().to(device)
|
||||||
test_data = (np.array([[2]]) - dataset.min_x) / (dataset.max_x - dataset.min_x)
|
criterion = nn.BCELoss()
|
||||||
test_data = Variable(
|
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
|
||||||
torch.tensor(test_data, dtype=torch.float64), requires_grad=False
|
|
||||||
).to(device)
|
for epoch in range(num_epochs):
|
||||||
predicted = model(test_data).to("cpu")
|
total_epoch_loss = 0
|
||||||
print(
|
total_epoch_pred = 0
|
||||||
f"Model weights: {model.linear.weight.item()}, bias: {model.linear.bias.item()}"
|
total_epoch_target = 0
|
||||||
)
|
for index, (x, targets) in tqdm(enumerate(dataloader), total=len(dataloader)):
|
||||||
print(f"Prediction for test data: {predicted.item()}")
|
optimizer.zero_grad()
|
||||||
|
|
||||||
|
x = x.to(device)
|
||||||
|
targets = targets.to(device)
|
||||||
|
|
||||||
|
x = x.unsqueeze(1)
|
||||||
|
targets = targets.unsqueeze(1)
|
||||||
|
y_pred = model(x)
|
||||||
|
loss = criterion(y_pred, targets)
|
||||||
|
total_epoch_loss += loss.item()
|
||||||
|
total_epoch_target += targets.sum().item()
|
||||||
|
total_epoch_pred += y_pred.sum().item()
|
||||||
|
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
print(
|
||||||
|
f"Epoch {epoch + 1}/{num_epochs}, Loss: {total_epoch_loss}, Acc: {1 - abs(total_epoch_pred - total_epoch_target) / total_epoch_target}"
|
||||||
|
)
|
||||||
|
|
||||||
|
with torch.no_grad():
|
||||||
|
test_data = (np.array([[2]]) - dataset.min_x) / (dataset.max_x - dataset.min_x)
|
||||||
|
test_data = Variable(
|
||||||
|
torch.tensor(test_data, dtype=torch.float64), requires_grad=False
|
||||||
|
).to(device)
|
||||||
|
predicted = model(test_data).to("cpu")
|
||||||
|
print(
|
||||||
|
f"Model weights: {model.linear.weight.item()}, bias: {model.linear.bias.item()}"
|
||||||
|
)
|
||||||
|
print(f"Prediction for test data: {predicted.item()}")
|
||||||
|
139
Lab1/code/3.1.py
139
Lab1/code/3.1.py
@ -96,73 +96,76 @@ class Model_3_1:
|
|||||||
return self.params
|
return self.params
|
||||||
|
|
||||||
|
|
||||||
learning_rate = 5e-1
|
if __name__ == "__main__":
|
||||||
num_epochs = 10
|
learning_rate = 5e-1
|
||||||
batch_size = 4096
|
num_epochs = 10
|
||||||
num_classes = 10
|
batch_size = 4096
|
||||||
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
num_classes = 10
|
||||||
|
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||||
|
|
||||||
transform = transforms.Compose(
|
transform = transforms.Compose(
|
||||||
[
|
[
|
||||||
transforms.ToTensor(),
|
transforms.ToTensor(),
|
||||||
transforms.Normalize((0.5,), (1.0,)),
|
transforms.Normalize((0.5,), (1.0,)),
|
||||||
]
|
]
|
||||||
)
|
|
||||||
train_dataset = datasets.FashionMNIST(
|
|
||||||
root="../dataset", train=True, transform=transform, download=True
|
|
||||||
)
|
|
||||||
test_dataset = datasets.FashionMNIST(
|
|
||||||
root="../dataset", train=False, transform=transform, download=True
|
|
||||||
)
|
|
||||||
train_loader = DataLoader(
|
|
||||||
dataset=train_dataset,
|
|
||||||
batch_size=batch_size,
|
|
||||||
shuffle=True,
|
|
||||||
num_workers=14,
|
|
||||||
pin_memory=True,
|
|
||||||
)
|
|
||||||
test_loader = DataLoader(
|
|
||||||
dataset=test_dataset,
|
|
||||||
batch_size=batch_size,
|
|
||||||
shuffle=True,
|
|
||||||
num_workers=14,
|
|
||||||
pin_memory=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
model = Model_3_1(num_classes).to(device)
|
|
||||||
criterion = My_CrossEntropyLoss()
|
|
||||||
optimizer = My_optimizer(model.parameters(), lr=learning_rate)
|
|
||||||
|
|
||||||
for epoch in range(num_epochs):
|
|
||||||
total_epoch_loss = 0
|
|
||||||
for index, (images, targets) in tqdm(
|
|
||||||
enumerate(train_loader), total=len(train_loader)
|
|
||||||
):
|
|
||||||
optimizer.zero_grad()
|
|
||||||
|
|
||||||
images = images.to(device)
|
|
||||||
targets = targets.to(device).to(dtype=torch.long)
|
|
||||||
|
|
||||||
one_hot_targets = (
|
|
||||||
my_one_hot(targets, num_classes=num_classes).to(device).to(dtype=torch.long)
|
|
||||||
)
|
|
||||||
|
|
||||||
outputs = model(images)
|
|
||||||
loss = criterion(outputs, one_hot_targets)
|
|
||||||
total_epoch_loss += loss
|
|
||||||
|
|
||||||
loss.backward()
|
|
||||||
optimizer.step()
|
|
||||||
|
|
||||||
total_acc = 0
|
|
||||||
with torch.no_grad():
|
|
||||||
for index, (image, targets) in tqdm(
|
|
||||||
enumerate(test_loader), total=len(test_loader)
|
|
||||||
):
|
|
||||||
image = image.to(device)
|
|
||||||
targets = targets.to(device)
|
|
||||||
outputs = model(image)
|
|
||||||
total_acc += (outputs.argmax(1) == targets).sum()
|
|
||||||
print(
|
|
||||||
f"Epoch {epoch + 1}/{num_epochs} Train, Loss: {total_epoch_loss}, Acc: {total_acc / len(test_dataset)}"
|
|
||||||
)
|
)
|
||||||
|
train_dataset = datasets.FashionMNIST(
|
||||||
|
root="../dataset", train=True, transform=transform, download=True
|
||||||
|
)
|
||||||
|
test_dataset = datasets.FashionMNIST(
|
||||||
|
root="../dataset", train=False, transform=transform, download=True
|
||||||
|
)
|
||||||
|
train_loader = DataLoader(
|
||||||
|
dataset=train_dataset,
|
||||||
|
batch_size=batch_size,
|
||||||
|
shuffle=True,
|
||||||
|
num_workers=14,
|
||||||
|
pin_memory=True,
|
||||||
|
)
|
||||||
|
test_loader = DataLoader(
|
||||||
|
dataset=test_dataset,
|
||||||
|
batch_size=batch_size,
|
||||||
|
shuffle=True,
|
||||||
|
num_workers=14,
|
||||||
|
pin_memory=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
model = Model_3_1(num_classes).to(device)
|
||||||
|
criterion = My_CrossEntropyLoss()
|
||||||
|
optimizer = My_optimizer(model.parameters(), lr=learning_rate)
|
||||||
|
|
||||||
|
for epoch in range(num_epochs):
|
||||||
|
total_epoch_loss = 0
|
||||||
|
for index, (images, targets) in tqdm(
|
||||||
|
enumerate(train_loader), total=len(train_loader)
|
||||||
|
):
|
||||||
|
optimizer.zero_grad()
|
||||||
|
|
||||||
|
images = images.to(device)
|
||||||
|
targets = targets.to(device).to(dtype=torch.long)
|
||||||
|
|
||||||
|
one_hot_targets = (
|
||||||
|
my_one_hot(targets, num_classes=num_classes)
|
||||||
|
.to(device)
|
||||||
|
.to(dtype=torch.long)
|
||||||
|
)
|
||||||
|
|
||||||
|
outputs = model(images)
|
||||||
|
loss = criterion(outputs, one_hot_targets)
|
||||||
|
total_epoch_loss += loss
|
||||||
|
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
total_acc = 0
|
||||||
|
with torch.no_grad():
|
||||||
|
for index, (image, targets) in tqdm(
|
||||||
|
enumerate(test_loader), total=len(test_loader)
|
||||||
|
):
|
||||||
|
image = image.to(device)
|
||||||
|
targets = targets.to(device)
|
||||||
|
outputs = model(image)
|
||||||
|
total_acc += (outputs.argmax(1) == targets).sum()
|
||||||
|
print(
|
||||||
|
f"Epoch {epoch + 1}/{num_epochs} Train, Loss: {total_epoch_loss}, Acc: {total_acc / len(test_dataset)}"
|
||||||
|
)
|
||||||
|
145
Lab1/code/3.2.py
145
Lab1/code/3.2.py
@ -20,77 +20,78 @@ class Model_3_2(nn.Module):
|
|||||||
return x
|
return x
|
||||||
|
|
||||||
|
|
||||||
learning_rate = 5e-2
|
if __name__ == "__main__":
|
||||||
num_epochs = 10
|
learning_rate = 5e-2
|
||||||
batch_size = 4096
|
num_epochs = 10
|
||||||
num_classes = 10
|
batch_size = 4096
|
||||||
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
num_classes = 10
|
||||||
|
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||||
|
|
||||||
transform = transforms.Compose(
|
transform = transforms.Compose(
|
||||||
[
|
[
|
||||||
transforms.ToTensor(),
|
transforms.ToTensor(),
|
||||||
transforms.Normalize((0.5,), (1.0,)),
|
transforms.Normalize((0.5,), (1.0,)),
|
||||||
]
|
]
|
||||||
)
|
|
||||||
train_dataset = datasets.FashionMNIST(
|
|
||||||
root="../dataset", train=True, transform=transform, download=True
|
|
||||||
)
|
|
||||||
test_dataset = datasets.FashionMNIST(
|
|
||||||
root="../dataset", train=False, transform=transform, download=True
|
|
||||||
)
|
|
||||||
train_loader = DataLoader(
|
|
||||||
dataset=train_dataset,
|
|
||||||
batch_size=batch_size,
|
|
||||||
shuffle=True,
|
|
||||||
num_workers=14,
|
|
||||||
pin_memory=True,
|
|
||||||
)
|
|
||||||
test_loader = DataLoader(
|
|
||||||
dataset=test_dataset,
|
|
||||||
batch_size=batch_size,
|
|
||||||
shuffle=True,
|
|
||||||
num_workers=14,
|
|
||||||
pin_memory=True,
|
|
||||||
)
|
|
||||||
|
|
||||||
model = Model_3_2(num_classes).to(device)
|
|
||||||
criterion = nn.CrossEntropyLoss()
|
|
||||||
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
|
|
||||||
|
|
||||||
for epoch in range(num_epochs):
|
|
||||||
total_epoch_loss = 0
|
|
||||||
model.train()
|
|
||||||
for index, (images, targets) in tqdm(
|
|
||||||
enumerate(train_loader), total=len(train_loader)
|
|
||||||
):
|
|
||||||
optimizer.zero_grad()
|
|
||||||
|
|
||||||
images = images.to(device)
|
|
||||||
targets = targets.to(device)
|
|
||||||
|
|
||||||
one_hot_targets = (
|
|
||||||
torch.nn.functional.one_hot(targets, num_classes=num_classes)
|
|
||||||
.to(device)
|
|
||||||
.to(dtype=torch.float32)
|
|
||||||
)
|
|
||||||
|
|
||||||
outputs = model(images)
|
|
||||||
loss = criterion(outputs, one_hot_targets)
|
|
||||||
total_epoch_loss += loss
|
|
||||||
|
|
||||||
loss.backward()
|
|
||||||
optimizer.step()
|
|
||||||
|
|
||||||
model.eval()
|
|
||||||
total_acc = 0
|
|
||||||
with torch.no_grad():
|
|
||||||
for index, (image, targets) in tqdm(
|
|
||||||
enumerate(test_loader), total=len(test_loader)
|
|
||||||
):
|
|
||||||
image = image.to(device)
|
|
||||||
targets = targets.to(device)
|
|
||||||
outputs = model(image)
|
|
||||||
total_acc += (outputs.argmax(1) == targets).sum()
|
|
||||||
print(
|
|
||||||
f"Epoch {epoch + 1}/{num_epochs} Train, Loss: {total_epoch_loss}, Acc: {total_acc / len(test_dataset)}"
|
|
||||||
)
|
)
|
||||||
|
train_dataset = datasets.FashionMNIST(
|
||||||
|
root="../dataset", train=True, transform=transform, download=True
|
||||||
|
)
|
||||||
|
test_dataset = datasets.FashionMNIST(
|
||||||
|
root="../dataset", train=False, transform=transform, download=True
|
||||||
|
)
|
||||||
|
train_loader = DataLoader(
|
||||||
|
dataset=train_dataset,
|
||||||
|
batch_size=batch_size,
|
||||||
|
shuffle=True,
|
||||||
|
num_workers=14,
|
||||||
|
pin_memory=True,
|
||||||
|
)
|
||||||
|
test_loader = DataLoader(
|
||||||
|
dataset=test_dataset,
|
||||||
|
batch_size=batch_size,
|
||||||
|
shuffle=True,
|
||||||
|
num_workers=14,
|
||||||
|
pin_memory=True,
|
||||||
|
)
|
||||||
|
|
||||||
|
model = Model_3_2(num_classes).to(device)
|
||||||
|
criterion = nn.CrossEntropyLoss()
|
||||||
|
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
|
||||||
|
|
||||||
|
for epoch in range(num_epochs):
|
||||||
|
total_epoch_loss = 0
|
||||||
|
model.train()
|
||||||
|
for index, (images, targets) in tqdm(
|
||||||
|
enumerate(train_loader), total=len(train_loader)
|
||||||
|
):
|
||||||
|
optimizer.zero_grad()
|
||||||
|
|
||||||
|
images = images.to(device)
|
||||||
|
targets = targets.to(device)
|
||||||
|
|
||||||
|
one_hot_targets = (
|
||||||
|
torch.nn.functional.one_hot(targets, num_classes=num_classes)
|
||||||
|
.to(device)
|
||||||
|
.to(dtype=torch.float32)
|
||||||
|
)
|
||||||
|
|
||||||
|
outputs = model(images)
|
||||||
|
loss = criterion(outputs, one_hot_targets)
|
||||||
|
total_epoch_loss += loss
|
||||||
|
|
||||||
|
loss.backward()
|
||||||
|
optimizer.step()
|
||||||
|
|
||||||
|
model.eval()
|
||||||
|
total_acc = 0
|
||||||
|
with torch.no_grad():
|
||||||
|
for index, (image, targets) in tqdm(
|
||||||
|
enumerate(test_loader), total=len(test_loader)
|
||||||
|
):
|
||||||
|
image = image.to(device)
|
||||||
|
targets = targets.to(device)
|
||||||
|
outputs = model(image)
|
||||||
|
total_acc += (outputs.argmax(1) == targets).sum()
|
||||||
|
print(
|
||||||
|
f"Epoch {epoch + 1}/{num_epochs} Train, Loss: {total_epoch_loss}, Acc: {total_acc / len(test_dataset)}"
|
||||||
|
)
|
||||||
|
122
requirements.txt
122
requirements.txt
@ -1,128 +1,8 @@
|
|||||||
anyio==4.0.0
|
|
||||||
argon2-cffi==23.1.0
|
|
||||||
argon2-cffi-bindings==21.2.0
|
|
||||||
arrow==1.3.0
|
|
||||||
asttokens==2.4.0
|
|
||||||
async-lru==2.0.4
|
|
||||||
attrs==23.1.0
|
|
||||||
Babel==2.13.0
|
|
||||||
backcall==0.2.0
|
|
||||||
beautifulsoup4==4.12.2
|
|
||||||
black==23.9.1
|
black==23.9.1
|
||||||
bleach==6.1.0
|
|
||||||
certifi==2023.7.22
|
|
||||||
cffi==1.16.0
|
|
||||||
charset-normalizer==3.3.0
|
|
||||||
click==8.1.7
|
|
||||||
comm==0.1.4
|
|
||||||
debugpy==1.8.0
|
|
||||||
decorator==5.1.1
|
|
||||||
defusedxml==0.7.1
|
|
||||||
exceptiongroup==1.1.3
|
|
||||||
executing==2.0.0
|
|
||||||
fastjsonschema==2.18.1
|
|
||||||
filelock==3.12.4
|
|
||||||
fqdn==1.5.1
|
|
||||||
fsspec==2023.9.2
|
|
||||||
idna==3.4
|
|
||||||
ipdb==0.13.13
|
ipdb==0.13.13
|
||||||
ipykernel==6.25.2
|
|
||||||
ipython==8.16.1
|
|
||||||
ipython-genutils==0.2.0
|
|
||||||
ipywidgets==8.1.1
|
|
||||||
isoduration==20.11.0
|
|
||||||
jedi==0.19.1
|
|
||||||
Jinja2==3.1.2
|
|
||||||
json5==0.9.14
|
|
||||||
jsonpointer==2.4
|
|
||||||
jsonschema==4.19.1
|
|
||||||
jsonschema-specifications==2023.7.1
|
|
||||||
jupyter==1.0.0
|
jupyter==1.0.0
|
||||||
jupyter-console==6.6.3
|
|
||||||
jupyter-events==0.7.0
|
|
||||||
jupyter-lsp==2.2.0
|
|
||||||
jupyter_client==8.3.1
|
|
||||||
jupyter_core==5.3.2
|
|
||||||
jupyter_server==2.7.3
|
|
||||||
jupyter_server_terminals==0.4.4
|
|
||||||
jupyterlab==4.0.6
|
|
||||||
jupyterlab-pygments==0.2.2
|
|
||||||
jupyterlab-widgets==3.0.9
|
|
||||||
jupyterlab_server==2.25.0
|
|
||||||
MarkupSafe==2.1.3
|
|
||||||
matplotlib-inline==0.1.6
|
|
||||||
mistune==3.0.2
|
|
||||||
mpmath==1.3.0
|
|
||||||
mypy-extensions==1.0.0
|
|
||||||
nbclient==0.8.0
|
|
||||||
nbconvert==7.9.2
|
|
||||||
nbformat==5.9.2
|
|
||||||
nest-asyncio==1.5.8
|
|
||||||
networkx==3.1
|
|
||||||
notebook==7.0.4
|
|
||||||
notebook_shim==0.2.3
|
|
||||||
numpy==1.26.0
|
numpy==1.26.0
|
||||||
nvidia-cublas-cu12==12.1.3.1
|
|
||||||
nvidia-cuda-cupti-cu12==12.1.105
|
|
||||||
nvidia-cuda-nvrtc-cu12==12.1.105
|
|
||||||
nvidia-cuda-runtime-cu12==12.1.105
|
|
||||||
nvidia-cudnn-cu12==8.9.2.26
|
|
||||||
nvidia-cufft-cu12==11.0.2.54
|
|
||||||
nvidia-curand-cu12==10.3.2.106
|
|
||||||
nvidia-cusolver-cu12==11.4.5.107
|
|
||||||
nvidia-cusparse-cu12==12.1.0.106
|
|
||||||
nvidia-nccl-cu12==2.18.1
|
|
||||||
nvidia-nvjitlink-cu12==12.2.140
|
|
||||||
nvidia-nvtx-cu12==12.1.105
|
|
||||||
overrides==7.4.0
|
|
||||||
packaging==23.2
|
|
||||||
pandocfilters==1.5.0
|
|
||||||
parso==0.8.3
|
|
||||||
pathspec==0.11.2
|
|
||||||
pexpect==4.8.0
|
|
||||||
pickleshare==0.7.5
|
|
||||||
Pillow==10.0.1
|
|
||||||
platformdirs==3.11.0
|
|
||||||
prometheus-client==0.17.1
|
|
||||||
prompt-toolkit==3.0.39
|
|
||||||
psutil==5.9.5
|
|
||||||
ptyprocess==0.7.0
|
|
||||||
pure-eval==0.2.2
|
|
||||||
pycparser==2.21
|
|
||||||
Pygments==2.16.1
|
|
||||||
python-dateutil==2.8.2
|
|
||||||
python-json-logger==2.0.7
|
|
||||||
PyYAML==6.0.1
|
|
||||||
pyzmq==25.1.1
|
|
||||||
qtconsole==5.4.4
|
|
||||||
QtPy==2.4.0
|
|
||||||
referencing==0.30.2
|
|
||||||
requests==2.31.0
|
|
||||||
rfc3339-validator==0.1.4
|
|
||||||
rfc3986-validator==0.1.1
|
|
||||||
rpds-py==0.10.4
|
|
||||||
Send2Trash==1.8.2
|
|
||||||
six==1.16.0
|
|
||||||
sniffio==1.3.0
|
|
||||||
soupsieve==2.5
|
|
||||||
stack-data==0.6.3
|
|
||||||
sympy==1.12
|
|
||||||
terminado==0.17.1
|
|
||||||
tinycss2==1.2.1
|
|
||||||
tomli==2.0.1
|
|
||||||
torch==2.1.0
|
torch==2.1.0
|
||||||
torchaudio==2.1.0
|
torchaudio==2.1.0
|
||||||
torchvision==0.16.0
|
torchvision==0.16.0
|
||||||
tornado==6.3.3
|
tqdm==4.66.1
|
||||||
tqdm==4.66.1
|
|
||||||
traitlets==5.11.2
|
|
||||||
triton==2.1.0
|
|
||||||
types-python-dateutil==2.8.19.14
|
|
||||||
typing_extensions==4.8.0
|
|
||||||
uri-template==1.3.0
|
|
||||||
urllib3==2.0.6
|
|
||||||
wcwidth==0.2.8
|
|
||||||
webcolors==1.13
|
|
||||||
webencodings==0.5.1
|
|
||||||
websocket-client==1.6.4
|
|
||||||
widgetsnbextension==4.0.9
|
|
Loading…
x
Reference in New Issue
Block a user