修改requirements.txt文件,添加main函数判断
This commit is contained in:
parent
d7e6706623
commit
1e25f418ae
@ -95,53 +95,54 @@ class My_Dataset(Dataset):
|
||||
return x, y
|
||||
|
||||
|
||||
learning_rate = 5e-2
|
||||
num_epochs = 10
|
||||
batch_size = 1024
|
||||
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||
if __name__ == "__main__":
|
||||
learning_rate = 5e-2
|
||||
num_epochs = 10
|
||||
batch_size = 1024
|
||||
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
dataset = My_Dataset()
|
||||
dataloader = DataLoader(
|
||||
dataset=dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=14,
|
||||
pin_memory=True,
|
||||
)
|
||||
|
||||
model = Model_2_1().to(device)
|
||||
criterion = My_BCELoss()
|
||||
optimizer = My_optimizer(model.parameters(), lr=learning_rate)
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
total_epoch_loss = 0
|
||||
total_epoch_pred = 0
|
||||
total_epoch_target = 0
|
||||
for index, (x, targets) in tqdm(enumerate(dataloader), total=len(dataloader)):
|
||||
optimizer.zero_grad()
|
||||
x = x.to(device).to(dtype=torch.float32)
|
||||
targets = targets.to(device).to(dtype=torch.float32)
|
||||
x = x.unsqueeze(1)
|
||||
y_pred = model(x)
|
||||
loss = criterion(y_pred, targets)
|
||||
total_epoch_loss += loss.item()
|
||||
total_epoch_target += targets.sum().item()
|
||||
total_epoch_pred += y_pred.sum().item()
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
print(
|
||||
f"Epoch {epoch + 1}/{num_epochs}, Loss: {total_epoch_loss}, Acc: {1 - abs(total_epoch_pred - total_epoch_target) / total_epoch_target}"
|
||||
dataset = My_Dataset()
|
||||
dataloader = DataLoader(
|
||||
dataset=dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=14,
|
||||
pin_memory=True,
|
||||
)
|
||||
|
||||
with torch.no_grad():
|
||||
test_data = (np.array([[2]]) - dataset.min_x) / (dataset.max_x - dataset.min_x)
|
||||
test_data = Variable(
|
||||
torch.tensor(test_data, dtype=torch.float64), requires_grad=False
|
||||
).to(device)
|
||||
predicted = model(test_data).to("cpu")
|
||||
print(
|
||||
f"Model weights: {model.linear.weight.item()}, bias: {model.linear.bias.item()}"
|
||||
)
|
||||
print(f"Prediction for test data: {predicted.item()}")
|
||||
model = Model_2_1().to(device)
|
||||
criterion = My_BCELoss()
|
||||
optimizer = My_optimizer(model.parameters(), lr=learning_rate)
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
total_epoch_loss = 0
|
||||
total_epoch_pred = 0
|
||||
total_epoch_target = 0
|
||||
for index, (x, targets) in tqdm(enumerate(dataloader), total=len(dataloader)):
|
||||
optimizer.zero_grad()
|
||||
x = x.to(device).to(dtype=torch.float32)
|
||||
targets = targets.to(device).to(dtype=torch.float32)
|
||||
x = x.unsqueeze(1)
|
||||
y_pred = model(x)
|
||||
loss = criterion(y_pred, targets)
|
||||
total_epoch_loss += loss.item()
|
||||
total_epoch_target += targets.sum().item()
|
||||
total_epoch_pred += y_pred.sum().item()
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
print(
|
||||
f"Epoch {epoch + 1}/{num_epochs}, Loss: {total_epoch_loss}, Acc: {1 - abs(total_epoch_pred - total_epoch_target) / total_epoch_target}"
|
||||
)
|
||||
|
||||
with torch.no_grad():
|
||||
test_data = (np.array([[2]]) - dataset.min_x) / (dataset.max_x - dataset.min_x)
|
||||
test_data = Variable(
|
||||
torch.tensor(test_data, dtype=torch.float64), requires_grad=False
|
||||
).to(device)
|
||||
predicted = model(test_data).to("cpu")
|
||||
print(
|
||||
f"Model weights: {model.linear.weight.item()}, bias: {model.linear.bias.item()}"
|
||||
)
|
||||
print(f"Prediction for test data: {predicted.item()}")
|
||||
|
101
Lab1/code/2.2.py
101
Lab1/code/2.2.py
@ -38,56 +38,57 @@ class My_Dataset(Dataset):
|
||||
return x, y
|
||||
|
||||
|
||||
learning_rate = 5e-2
|
||||
num_epochs = 10
|
||||
batch_size = 1024
|
||||
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||
if __name__ == "__main__":
|
||||
learning_rate = 5e-2
|
||||
num_epochs = 10
|
||||
batch_size = 1024
|
||||
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
dataset = My_Dataset()
|
||||
dataloader = DataLoader(
|
||||
dataset=dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=14,
|
||||
pin_memory=True,
|
||||
)
|
||||
|
||||
model = Model_2_2().to(device)
|
||||
criterion = nn.BCELoss()
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
total_epoch_loss = 0
|
||||
total_epoch_pred = 0
|
||||
total_epoch_target = 0
|
||||
for index, (x, targets) in tqdm(enumerate(dataloader), total=len(dataloader)):
|
||||
optimizer.zero_grad()
|
||||
|
||||
x = x.to(device)
|
||||
targets = targets.to(device)
|
||||
|
||||
x = x.unsqueeze(1)
|
||||
targets = targets.unsqueeze(1)
|
||||
y_pred = model(x)
|
||||
loss = criterion(y_pred, targets)
|
||||
total_epoch_loss += loss.item()
|
||||
total_epoch_target += targets.sum().item()
|
||||
total_epoch_pred += y_pred.sum().item()
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
print(
|
||||
f"Epoch {epoch + 1}/{num_epochs}, Loss: {total_epoch_loss}, Acc: {1 - abs(total_epoch_pred - total_epoch_target) / total_epoch_target}"
|
||||
dataset = My_Dataset()
|
||||
dataloader = DataLoader(
|
||||
dataset=dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=14,
|
||||
pin_memory=True,
|
||||
)
|
||||
|
||||
with torch.no_grad():
|
||||
test_data = (np.array([[2]]) - dataset.min_x) / (dataset.max_x - dataset.min_x)
|
||||
test_data = Variable(
|
||||
torch.tensor(test_data, dtype=torch.float64), requires_grad=False
|
||||
).to(device)
|
||||
predicted = model(test_data).to("cpu")
|
||||
print(
|
||||
f"Model weights: {model.linear.weight.item()}, bias: {model.linear.bias.item()}"
|
||||
)
|
||||
print(f"Prediction for test data: {predicted.item()}")
|
||||
model = Model_2_2().to(device)
|
||||
criterion = nn.BCELoss()
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
total_epoch_loss = 0
|
||||
total_epoch_pred = 0
|
||||
total_epoch_target = 0
|
||||
for index, (x, targets) in tqdm(enumerate(dataloader), total=len(dataloader)):
|
||||
optimizer.zero_grad()
|
||||
|
||||
x = x.to(device)
|
||||
targets = targets.to(device)
|
||||
|
||||
x = x.unsqueeze(1)
|
||||
targets = targets.unsqueeze(1)
|
||||
y_pred = model(x)
|
||||
loss = criterion(y_pred, targets)
|
||||
total_epoch_loss += loss.item()
|
||||
total_epoch_target += targets.sum().item()
|
||||
total_epoch_pred += y_pred.sum().item()
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
print(
|
||||
f"Epoch {epoch + 1}/{num_epochs}, Loss: {total_epoch_loss}, Acc: {1 - abs(total_epoch_pred - total_epoch_target) / total_epoch_target}"
|
||||
)
|
||||
|
||||
with torch.no_grad():
|
||||
test_data = (np.array([[2]]) - dataset.min_x) / (dataset.max_x - dataset.min_x)
|
||||
test_data = Variable(
|
||||
torch.tensor(test_data, dtype=torch.float64), requires_grad=False
|
||||
).to(device)
|
||||
predicted = model(test_data).to("cpu")
|
||||
print(
|
||||
f"Model weights: {model.linear.weight.item()}, bias: {model.linear.bias.item()}"
|
||||
)
|
||||
print(f"Prediction for test data: {predicted.item()}")
|
||||
|
139
Lab1/code/3.1.py
139
Lab1/code/3.1.py
@ -96,73 +96,76 @@ class Model_3_1:
|
||||
return self.params
|
||||
|
||||
|
||||
learning_rate = 5e-1
|
||||
num_epochs = 10
|
||||
batch_size = 4096
|
||||
num_classes = 10
|
||||
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||
if __name__ == "__main__":
|
||||
learning_rate = 5e-1
|
||||
num_epochs = 10
|
||||
batch_size = 4096
|
||||
num_classes = 10
|
||||
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
transform = transforms.Compose(
|
||||
[
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.5,), (1.0,)),
|
||||
]
|
||||
)
|
||||
train_dataset = datasets.FashionMNIST(
|
||||
root="../dataset", train=True, transform=transform, download=True
|
||||
)
|
||||
test_dataset = datasets.FashionMNIST(
|
||||
root="../dataset", train=False, transform=transform, download=True
|
||||
)
|
||||
train_loader = DataLoader(
|
||||
dataset=train_dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=14,
|
||||
pin_memory=True,
|
||||
)
|
||||
test_loader = DataLoader(
|
||||
dataset=test_dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=14,
|
||||
pin_memory=True,
|
||||
)
|
||||
|
||||
model = Model_3_1(num_classes).to(device)
|
||||
criterion = My_CrossEntropyLoss()
|
||||
optimizer = My_optimizer(model.parameters(), lr=learning_rate)
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
total_epoch_loss = 0
|
||||
for index, (images, targets) in tqdm(
|
||||
enumerate(train_loader), total=len(train_loader)
|
||||
):
|
||||
optimizer.zero_grad()
|
||||
|
||||
images = images.to(device)
|
||||
targets = targets.to(device).to(dtype=torch.long)
|
||||
|
||||
one_hot_targets = (
|
||||
my_one_hot(targets, num_classes=num_classes).to(device).to(dtype=torch.long)
|
||||
)
|
||||
|
||||
outputs = model(images)
|
||||
loss = criterion(outputs, one_hot_targets)
|
||||
total_epoch_loss += loss
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
total_acc = 0
|
||||
with torch.no_grad():
|
||||
for index, (image, targets) in tqdm(
|
||||
enumerate(test_loader), total=len(test_loader)
|
||||
):
|
||||
image = image.to(device)
|
||||
targets = targets.to(device)
|
||||
outputs = model(image)
|
||||
total_acc += (outputs.argmax(1) == targets).sum()
|
||||
print(
|
||||
f"Epoch {epoch + 1}/{num_epochs} Train, Loss: {total_epoch_loss}, Acc: {total_acc / len(test_dataset)}"
|
||||
transform = transforms.Compose(
|
||||
[
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.5,), (1.0,)),
|
||||
]
|
||||
)
|
||||
train_dataset = datasets.FashionMNIST(
|
||||
root="../dataset", train=True, transform=transform, download=True
|
||||
)
|
||||
test_dataset = datasets.FashionMNIST(
|
||||
root="../dataset", train=False, transform=transform, download=True
|
||||
)
|
||||
train_loader = DataLoader(
|
||||
dataset=train_dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=14,
|
||||
pin_memory=True,
|
||||
)
|
||||
test_loader = DataLoader(
|
||||
dataset=test_dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=14,
|
||||
pin_memory=True,
|
||||
)
|
||||
|
||||
model = Model_3_1(num_classes).to(device)
|
||||
criterion = My_CrossEntropyLoss()
|
||||
optimizer = My_optimizer(model.parameters(), lr=learning_rate)
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
total_epoch_loss = 0
|
||||
for index, (images, targets) in tqdm(
|
||||
enumerate(train_loader), total=len(train_loader)
|
||||
):
|
||||
optimizer.zero_grad()
|
||||
|
||||
images = images.to(device)
|
||||
targets = targets.to(device).to(dtype=torch.long)
|
||||
|
||||
one_hot_targets = (
|
||||
my_one_hot(targets, num_classes=num_classes)
|
||||
.to(device)
|
||||
.to(dtype=torch.long)
|
||||
)
|
||||
|
||||
outputs = model(images)
|
||||
loss = criterion(outputs, one_hot_targets)
|
||||
total_epoch_loss += loss
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
total_acc = 0
|
||||
with torch.no_grad():
|
||||
for index, (image, targets) in tqdm(
|
||||
enumerate(test_loader), total=len(test_loader)
|
||||
):
|
||||
image = image.to(device)
|
||||
targets = targets.to(device)
|
||||
outputs = model(image)
|
||||
total_acc += (outputs.argmax(1) == targets).sum()
|
||||
print(
|
||||
f"Epoch {epoch + 1}/{num_epochs} Train, Loss: {total_epoch_loss}, Acc: {total_acc / len(test_dataset)}"
|
||||
)
|
||||
|
145
Lab1/code/3.2.py
145
Lab1/code/3.2.py
@ -20,77 +20,78 @@ class Model_3_2(nn.Module):
|
||||
return x
|
||||
|
||||
|
||||
learning_rate = 5e-2
|
||||
num_epochs = 10
|
||||
batch_size = 4096
|
||||
num_classes = 10
|
||||
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||
if __name__ == "__main__":
|
||||
learning_rate = 5e-2
|
||||
num_epochs = 10
|
||||
batch_size = 4096
|
||||
num_classes = 10
|
||||
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
transform = transforms.Compose(
|
||||
[
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.5,), (1.0,)),
|
||||
]
|
||||
)
|
||||
train_dataset = datasets.FashionMNIST(
|
||||
root="../dataset", train=True, transform=transform, download=True
|
||||
)
|
||||
test_dataset = datasets.FashionMNIST(
|
||||
root="../dataset", train=False, transform=transform, download=True
|
||||
)
|
||||
train_loader = DataLoader(
|
||||
dataset=train_dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=14,
|
||||
pin_memory=True,
|
||||
)
|
||||
test_loader = DataLoader(
|
||||
dataset=test_dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=14,
|
||||
pin_memory=True,
|
||||
)
|
||||
|
||||
model = Model_3_2(num_classes).to(device)
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
total_epoch_loss = 0
|
||||
model.train()
|
||||
for index, (images, targets) in tqdm(
|
||||
enumerate(train_loader), total=len(train_loader)
|
||||
):
|
||||
optimizer.zero_grad()
|
||||
|
||||
images = images.to(device)
|
||||
targets = targets.to(device)
|
||||
|
||||
one_hot_targets = (
|
||||
torch.nn.functional.one_hot(targets, num_classes=num_classes)
|
||||
.to(device)
|
||||
.to(dtype=torch.float32)
|
||||
)
|
||||
|
||||
outputs = model(images)
|
||||
loss = criterion(outputs, one_hot_targets)
|
||||
total_epoch_loss += loss
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
model.eval()
|
||||
total_acc = 0
|
||||
with torch.no_grad():
|
||||
for index, (image, targets) in tqdm(
|
||||
enumerate(test_loader), total=len(test_loader)
|
||||
):
|
||||
image = image.to(device)
|
||||
targets = targets.to(device)
|
||||
outputs = model(image)
|
||||
total_acc += (outputs.argmax(1) == targets).sum()
|
||||
print(
|
||||
f"Epoch {epoch + 1}/{num_epochs} Train, Loss: {total_epoch_loss}, Acc: {total_acc / len(test_dataset)}"
|
||||
transform = transforms.Compose(
|
||||
[
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.5,), (1.0,)),
|
||||
]
|
||||
)
|
||||
train_dataset = datasets.FashionMNIST(
|
||||
root="../dataset", train=True, transform=transform, download=True
|
||||
)
|
||||
test_dataset = datasets.FashionMNIST(
|
||||
root="../dataset", train=False, transform=transform, download=True
|
||||
)
|
||||
train_loader = DataLoader(
|
||||
dataset=train_dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=14,
|
||||
pin_memory=True,
|
||||
)
|
||||
test_loader = DataLoader(
|
||||
dataset=test_dataset,
|
||||
batch_size=batch_size,
|
||||
shuffle=True,
|
||||
num_workers=14,
|
||||
pin_memory=True,
|
||||
)
|
||||
|
||||
model = Model_3_2(num_classes).to(device)
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
|
||||
|
||||
for epoch in range(num_epochs):
|
||||
total_epoch_loss = 0
|
||||
model.train()
|
||||
for index, (images, targets) in tqdm(
|
||||
enumerate(train_loader), total=len(train_loader)
|
||||
):
|
||||
optimizer.zero_grad()
|
||||
|
||||
images = images.to(device)
|
||||
targets = targets.to(device)
|
||||
|
||||
one_hot_targets = (
|
||||
torch.nn.functional.one_hot(targets, num_classes=num_classes)
|
||||
.to(device)
|
||||
.to(dtype=torch.float32)
|
||||
)
|
||||
|
||||
outputs = model(images)
|
||||
loss = criterion(outputs, one_hot_targets)
|
||||
total_epoch_loss += loss
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
model.eval()
|
||||
total_acc = 0
|
||||
with torch.no_grad():
|
||||
for index, (image, targets) in tqdm(
|
||||
enumerate(test_loader), total=len(test_loader)
|
||||
):
|
||||
image = image.to(device)
|
||||
targets = targets.to(device)
|
||||
outputs = model(image)
|
||||
total_acc += (outputs.argmax(1) == targets).sum()
|
||||
print(
|
||||
f"Epoch {epoch + 1}/{num_epochs} Train, Loss: {total_epoch_loss}, Acc: {total_acc / len(test_dataset)}"
|
||||
)
|
||||
|
122
requirements.txt
122
requirements.txt
@ -1,128 +1,8 @@
|
||||
anyio==4.0.0
|
||||
argon2-cffi==23.1.0
|
||||
argon2-cffi-bindings==21.2.0
|
||||
arrow==1.3.0
|
||||
asttokens==2.4.0
|
||||
async-lru==2.0.4
|
||||
attrs==23.1.0
|
||||
Babel==2.13.0
|
||||
backcall==0.2.0
|
||||
beautifulsoup4==4.12.2
|
||||
black==23.9.1
|
||||
bleach==6.1.0
|
||||
certifi==2023.7.22
|
||||
cffi==1.16.0
|
||||
charset-normalizer==3.3.0
|
||||
click==8.1.7
|
||||
comm==0.1.4
|
||||
debugpy==1.8.0
|
||||
decorator==5.1.1
|
||||
defusedxml==0.7.1
|
||||
exceptiongroup==1.1.3
|
||||
executing==2.0.0
|
||||
fastjsonschema==2.18.1
|
||||
filelock==3.12.4
|
||||
fqdn==1.5.1
|
||||
fsspec==2023.9.2
|
||||
idna==3.4
|
||||
ipdb==0.13.13
|
||||
ipykernel==6.25.2
|
||||
ipython==8.16.1
|
||||
ipython-genutils==0.2.0
|
||||
ipywidgets==8.1.1
|
||||
isoduration==20.11.0
|
||||
jedi==0.19.1
|
||||
Jinja2==3.1.2
|
||||
json5==0.9.14
|
||||
jsonpointer==2.4
|
||||
jsonschema==4.19.1
|
||||
jsonschema-specifications==2023.7.1
|
||||
jupyter==1.0.0
|
||||
jupyter-console==6.6.3
|
||||
jupyter-events==0.7.0
|
||||
jupyter-lsp==2.2.0
|
||||
jupyter_client==8.3.1
|
||||
jupyter_core==5.3.2
|
||||
jupyter_server==2.7.3
|
||||
jupyter_server_terminals==0.4.4
|
||||
jupyterlab==4.0.6
|
||||
jupyterlab-pygments==0.2.2
|
||||
jupyterlab-widgets==3.0.9
|
||||
jupyterlab_server==2.25.0
|
||||
MarkupSafe==2.1.3
|
||||
matplotlib-inline==0.1.6
|
||||
mistune==3.0.2
|
||||
mpmath==1.3.0
|
||||
mypy-extensions==1.0.0
|
||||
nbclient==0.8.0
|
||||
nbconvert==7.9.2
|
||||
nbformat==5.9.2
|
||||
nest-asyncio==1.5.8
|
||||
networkx==3.1
|
||||
notebook==7.0.4
|
||||
notebook_shim==0.2.3
|
||||
numpy==1.26.0
|
||||
nvidia-cublas-cu12==12.1.3.1
|
||||
nvidia-cuda-cupti-cu12==12.1.105
|
||||
nvidia-cuda-nvrtc-cu12==12.1.105
|
||||
nvidia-cuda-runtime-cu12==12.1.105
|
||||
nvidia-cudnn-cu12==8.9.2.26
|
||||
nvidia-cufft-cu12==11.0.2.54
|
||||
nvidia-curand-cu12==10.3.2.106
|
||||
nvidia-cusolver-cu12==11.4.5.107
|
||||
nvidia-cusparse-cu12==12.1.0.106
|
||||
nvidia-nccl-cu12==2.18.1
|
||||
nvidia-nvjitlink-cu12==12.2.140
|
||||
nvidia-nvtx-cu12==12.1.105
|
||||
overrides==7.4.0
|
||||
packaging==23.2
|
||||
pandocfilters==1.5.0
|
||||
parso==0.8.3
|
||||
pathspec==0.11.2
|
||||
pexpect==4.8.0
|
||||
pickleshare==0.7.5
|
||||
Pillow==10.0.1
|
||||
platformdirs==3.11.0
|
||||
prometheus-client==0.17.1
|
||||
prompt-toolkit==3.0.39
|
||||
psutil==5.9.5
|
||||
ptyprocess==0.7.0
|
||||
pure-eval==0.2.2
|
||||
pycparser==2.21
|
||||
Pygments==2.16.1
|
||||
python-dateutil==2.8.2
|
||||
python-json-logger==2.0.7
|
||||
PyYAML==6.0.1
|
||||
pyzmq==25.1.1
|
||||
qtconsole==5.4.4
|
||||
QtPy==2.4.0
|
||||
referencing==0.30.2
|
||||
requests==2.31.0
|
||||
rfc3339-validator==0.1.4
|
||||
rfc3986-validator==0.1.1
|
||||
rpds-py==0.10.4
|
||||
Send2Trash==1.8.2
|
||||
six==1.16.0
|
||||
sniffio==1.3.0
|
||||
soupsieve==2.5
|
||||
stack-data==0.6.3
|
||||
sympy==1.12
|
||||
terminado==0.17.1
|
||||
tinycss2==1.2.1
|
||||
tomli==2.0.1
|
||||
torch==2.1.0
|
||||
torchaudio==2.1.0
|
||||
torchvision==0.16.0
|
||||
tornado==6.3.3
|
||||
tqdm==4.66.1
|
||||
traitlets==5.11.2
|
||||
triton==2.1.0
|
||||
types-python-dateutil==2.8.19.14
|
||||
typing_extensions==4.8.0
|
||||
uri-template==1.3.0
|
||||
urllib3==2.0.6
|
||||
wcwidth==0.2.8
|
||||
webcolors==1.13
|
||||
webencodings==0.5.1
|
||||
websocket-client==1.6.4
|
||||
widgetsnbextension==4.0.9
|
||||
tqdm==4.66.1
|
Loading…
x
Reference in New Issue
Block a user