解决手动softmax模型训练梯度爆炸问题

This commit is contained in:
Jingfan Ke 2023-10-10 19:11:21 +08:00
parent c384059131
commit 9c8f12e431
4 changed files with 33 additions and 26 deletions

View File

@ -53,7 +53,7 @@ class My_Linear:
return self.params
class Model:
class Model_2_1:
def __init__(self):
self.linear = My_Linear(1, 1)
self.params = self.linear.params
@ -102,10 +102,14 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
dataset = My_Dataset()
dataloader = DataLoader(
dataset=dataset, batch_size=batch_size, shuffle=True, num_workers=5, pin_memory=True
dataset=dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
model = Model().to(device)
model = Model_2_1().to(device)
criterion = My_BCELoss()
optimizer = My_optimizer(model.parameters(), lr=learning_rate)

View File

@ -7,9 +7,9 @@ from tqdm import tqdm
import ipdb
class Model(nn.Module):
class Model_2_2(nn.Module):
def __init__(self):
super(Model, self).__init__()
super(Model_2_2, self).__init__()
self.linear = nn.Linear(1, 1, dtype=torch.float64)
def forward(self, x):
@ -38,17 +38,21 @@ class My_Dataset(Dataset):
return x, y
learning_rate = 1e-2
learning_rate = 5e-2
num_epochs = 10
batch_size = 1024
device = "cuda:0" if torch.cuda.is_available() else "cpu"
dataset = My_Dataset()
dataloader = DataLoader(
dataset=dataset, batch_size=batch_size, shuffle=True, num_workers=5, pin_memory=True
dataset=dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
model = Model().to(device)
model = Model_2_2().to(device)
criterion = nn.BCELoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)

View File

@ -27,7 +27,7 @@ class My_CrossEntropyLoss:
class My_optimizer:
def __init__(self, params: list[torch.Tensor], lr: float):
self.params = params
self.params = list(params)
self.lr = lr
def step(self):
@ -96,7 +96,7 @@ class Model_3_1:
return self.params
learning_rate = 5e-3
learning_rate = 5e-1
num_epochs = 10
batch_size = 4096
num_classes = 10
@ -105,27 +105,27 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,)),
transforms.Normalize((0.5,), (1.0,)),
]
)
train_dataset = datasets.FashionMNIST(
root="./dataset", train=True, transform=transform, download=True
root="../dataset", train=True, transform=transform, download=True
)
test_dataset = datasets.FashionMNIST(
root="./dataset", train=False, transform=transform, download=True
root="../dataset", train=False, transform=transform, download=True
)
train_loader = DataLoader(
dataset=train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=4,
num_workers=14,
pin_memory=True,
)
test_loader = DataLoader(
dataset=test_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=4,
num_workers=14,
pin_memory=True,
)
@ -148,7 +148,6 @@ for epoch in range(num_epochs):
)
outputs = model(images)
# ipdb.set_trace()
loss = criterion(outputs, one_hot_targets)
total_epoch_loss += loss

View File

@ -8,9 +8,9 @@ from torch.utils.data import DataLoader
import ipdb
class Model(nn.Module):
class Model_3_2(nn.Module):
def __init__(self, num_classes):
super(Model, self).__init__()
super(Model_3_2, self).__init__()
self.flatten = nn.Flatten()
self.linear = nn.Linear(28 * 28, num_classes)
@ -20,7 +20,7 @@ class Model(nn.Module):
return x
learning_rate = 5e-3
learning_rate = 5e-2
num_epochs = 10
batch_size = 4096
num_classes = 10
@ -29,33 +29,33 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,)),
transforms.Normalize((0.5,), (1.0,)),
]
)
train_dataset = datasets.FashionMNIST(
root="./dataset", train=True, transform=transform, download=True
root="../dataset", train=True, transform=transform, download=True
)
test_dataset = datasets.FashionMNIST(
root="./dataset", train=False, transform=transform, download=True
root="../dataset", train=False, transform=transform, download=True
)
train_loader = DataLoader(
dataset=train_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=4,
num_workers=14,
pin_memory=True,
)
test_loader = DataLoader(
dataset=test_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=4,
num_workers=14,
pin_memory=True,
)
model = Model(num_classes).to(device)
model = Model_3_2(num_classes).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
total_epoch_loss = 0