完成实验二前两个任务;修改gitignore屏蔽.pyc文件

This commit is contained in:
Jingfan Ke 2023-10-24 12:20:34 +08:00
parent 18f5eaed19
commit bef19fd9f0
9 changed files with 2151 additions and 1 deletions

4
.gitignore vendored
View File

@ -2,4 +2,6 @@ dataset/
.vscode/ .vscode/
.ipynb_checkpoints/ .ipynb_checkpoints/
*.pyc

132
Lab2/code/1.1.py Normal file
View File

@ -0,0 +1,132 @@
import time
import numpy as np
import torch
from torch.nn.functional import one_hot, softmax
from torch.utils.data import Dataset, DataLoader
from torch import nn
from torchvision import datasets, transforms
from tqdm import tqdm
from utils import *
import ipdb
class Model_1_1:
def __init__(self):
self.linear = My_Linear(in_features=500, out_features=1)
self.sigmoid = My_Sigmoid()
self.params = self.linear.params
def __call__(self, x):
return self.forward(x)
def forward(self, x):
x = self.linear(x)
x = self.sigmoid(x)
return x
def to(self, device: str):
for param in self.params:
param.data = param.data.to(device=device)
return self
def parameters(self):
return self.params
def train(self):
for param in self.params:
param.requires_grad = True
def eval(self):
for param in self.params:
param.requires_grad = False
class My_Regression_Dataset(Dataset):
def __init__(self, train=True):
data_size = 7000 if train else 3000
np.random.seed(0)
x = np.random.random((data_size, 500)) * 0.005
noise = np.random.randn(data_size) * 1e-7
y = 0.028 - 0.0056 * x.sum(axis=1) + noise
y = y.reshape(-1, 1)
self.data = [[x[i], y[i]] for i in range(x.shape[0])]
def __len__(self):
return len(self.data)
def __getitem__(self, index):
x, y = self.data[index]
x = torch.FloatTensor(x)
y = torch.FloatTensor(y)
return x, y
if __name__ == "__main__":
learning_rate = 5
num_epochs = 10
batch_size = 512
device = "cuda:0" if torch.cuda.is_available() else "cpu"
train_regression_dataset = My_Regression_Dataset(train=True)
test_regression_dataset = My_Regression_Dataset(train=False)
train_dataloader = DataLoader(
dataset=train_regression_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
test_dataloader = DataLoader(
dataset=test_regression_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
model = Model_1_1().to(device)
criterion = My_BCELoss()
optimizer = My_optimizer(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
model.train()
total_epoch_loss = 0
start_time = time.time()
for index, (x, targets) in tqdm(enumerate(train_dataloader), total=len(train_dataloader)):
optimizer.zero_grad()
x = x.to(device)
targets = targets.to(device)
y_pred = model(x)
loss = criterion(y_pred, targets)
total_epoch_loss += loss.item()
loss.backward()
optimizer.step()
end_time = time.time()
train_time = end_time - start_time
model.eval()
with torch.no_grad():
total_epoch_acc = 0
start_time = time.time()
for index, (x, targets) in tqdm(enumerate(test_dataloader), total=len(test_dataloader)):
x = x.to(device)
targets = targets.to(device)
y_pred = model(x)
total_epoch_acc += (1 - torch.abs(y_pred - targets) / torch.abs(targets)).sum().item()
end_time = time.time()
test_time = end_time - start_time
avg_epoch_acc = total_epoch_acc / len(test_regression_dataset)
print(
f"Epoch [{epoch + 1}/{num_epochs}],",
f"Train Loss: {total_epoch_loss},",
f"Used Time: {train_time * 1000:.3f}ms,",
f"Test Acc: {avg_epoch_acc * 100:.3f}%,",
f"Used Time: {test_time * 1000:.3f}ms",
)

137
Lab2/code/1.2.py Normal file
View File

@ -0,0 +1,137 @@
import time
import numpy as np
import torch
from torch.nn.functional import one_hot, softmax
from torch.utils.data import Dataset, DataLoader
from torch import nn
from torchvision import datasets, transforms
from tqdm import tqdm
from utils import *
import ipdb
class Model_1_2:
def __init__(self):
self.fc = My_Linear(in_features=200, out_features=1)
self.sigmoid = My_Sigmoid()
self.params = self.fc.parameters()
def __call__(self, x):
return self.forward(x)
def forward(self, x):
x = self.fc(x)
x = self.sigmoid(x)
return x
def to(self, device: str):
for param in self.params:
param.data = param.data.to(device=device)
return self
def parameters(self):
return self.params
def train(self):
for param in self.params:
param.requires_grad = True
def eval(self):
for param in self.params:
param.requires_grad = False
class My_BinaryCLS_Dataset(Dataset):
def __init__(self, train=True, num_features=200):
num_samples = 7000 if train else 3000
x_1 = np.random.normal(loc=-0.5, scale=0.2, size=(num_samples, num_features))
x_2 = np.random.normal(loc=0.5, scale=0.2, size=(num_samples, num_features))
labels_1 = np.zeros((num_samples, 1))
labels_2 = np.ones((num_samples, 1))
x = np.concatenate((x_1, x_2), axis=0)
labels = np.concatenate((labels_1, labels_2), axis=0)
self.data = [[x[i], labels[i]] for i in range(2 * num_samples)]
def __len__(self):
return len(self.data)
def __getitem__(self, index):
x, y = self.data[index]
x = torch.FloatTensor(x)
y = torch.LongTensor(y)
return x, y
if __name__ == "__main__":
learning_rate = 5e-3
num_epochs = 10
batch_size = 512
device = "cuda:0" if torch.cuda.is_available() else "cpu"
train_binarycls_dataset = My_BinaryCLS_Dataset(train=True)
test_binarycls_dataset = My_BinaryCLS_Dataset(train=False)
train_dataloader = DataLoader(
dataset=train_binarycls_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
test_dataloader = DataLoader(
dataset=test_binarycls_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
model = Model_1_2().to(device)
criterion = My_BCELoss()
optimizer = My_optimizer(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
model.train()
total_epoch_loss = 0
start_time = time.time()
for index, (x, targets) in tqdm(enumerate(train_dataloader), total=len(train_dataloader)):
optimizer.zero_grad()
x = x.to(device)
targets = targets.to(device).to(dtype=torch.float)
y_pred = model(x)
loss = criterion(y_pred, targets)
total_epoch_loss += loss.item()
loss.backward()
optimizer.step()
end_time = time.time()
train_time = end_time - start_time
model.eval()
with torch.no_grad():
total_epoch_acc = 0
start_time = time.time()
for index, (x, targets) in tqdm(enumerate(test_dataloader), total=len(test_dataloader)):
x = x.to(device)
targets = targets.to(device)
output = model(x)
pred = (output > 0.5).to(dtype=torch.long)
total_epoch_acc += (pred == targets).sum().item()
end_time = time.time()
test_time = end_time - start_time
avg_epoch_acc = total_epoch_acc / len(test_binarycls_dataset)
print(
f"Epoch [{epoch + 1}/{num_epochs}],",
f"Train Loss: {total_epoch_loss},",
f"Used Time: {train_time * 1000:.3f}ms,",
f"Test Acc: {avg_epoch_acc * 100:.3f}%,",
f"Used Time: {test_time * 1000:.3f}ms",
)

125
Lab2/code/1.3.py Normal file
View File

@ -0,0 +1,125 @@
import time
import numpy as np
import torch
from torch.nn.functional import one_hot, softmax
from torch.utils.data import Dataset, DataLoader
from torch import nn
from torchvision import datasets, transforms
from tqdm import tqdm
from utils import *
import ipdb
class Model_1_3:
def __init__(self, num_classes):
self.flatten = My_Flatten()
self.linear = My_Linear(in_features=28 * 28, out_features=num_classes)
self.params = self.linear.params
def __call__(self, x: torch.Tensor):
return self.forward(x)
def forward(self, x: torch.Tensor):
x = self.flatten(x)
x = self.linear(x)
return x
def to(self, device: str):
for param in self.params:
param.data = param.data.to(device=device)
return self
def parameters(self):
return self.params
def train(self):
for param in self.params:
param.requires_grad = True
def eval(self):
for param in self.params:
param.requires_grad = False
if __name__ == "__main__":
learning_rate = 1e-1
num_epochs = 10
batch_size = 512
num_classes = 10
device = "cuda:0" if torch.cuda.is_available() else "cpu"
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,)),
]
)
train_mnist_dataset = datasets.MNIST(root="../dataset", train=True, transform=transform, download=True)
test_mnist_dataset = datasets.MNIST(root="../dataset", train=False, transform=transform, download=True)
train_loader = DataLoader(
dataset=train_mnist_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
test_loader = DataLoader(
dataset=test_mnist_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
model = Model_1_3(num_classes).to(device)
criterion = My_CrossEntropyLoss()
optimizer = My_optimizer(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
model.train()
total_epoch_loss = 0
start_time = time.time()
for index, (images, targets) in tqdm(
enumerate(train_loader), total=len(train_loader)
):
optimizer.zero_grad()
images = images.to(device)
targets = targets.to(device)
one_hot_targets = my_one_hot(targets, num_classes=num_classes).to(dtype=torch.float)
outputs = model(images)
loss = criterion(outputs, one_hot_targets)
total_epoch_loss += loss.item()
loss.backward()
optimizer.step()
end_time = time.time()
train_time = end_time - start_time
model.eval()
with torch.no_grad():
total_epoch_acc = 0
start_time = time.time()
for index, (image, targets) in tqdm(
enumerate(test_loader), total=len(test_loader)
):
image = image.to(device)
targets = targets.to(device)
outputs = model(image)
pred = my_softmax(outputs, dim=1)
total_epoch_acc += (pred.argmax(1) == targets).sum().item()
end_time = time.time()
test_time = end_time - start_time
avg_epoch_acc = total_epoch_acc / len(test_mnist_dataset)
print(
f"Epoch [{epoch + 1}/{num_epochs}],",
f"Train Loss: {total_epoch_loss},",
f"Used Time: {train_time * 1000:.3f}ms,",
f"Test Acc: {avg_epoch_acc * 100:.3f}%,",
f"Used Time: {test_time * 1000:.3f}ms",
)

114
Lab2/code/2.1.py Normal file
View File

@ -0,0 +1,114 @@
import time
import numpy as np
import torch
from torch.nn.functional import one_hot, softmax
from torch.utils.data import Dataset, DataLoader
from torch import nn
from torchvision import datasets, transforms
from tqdm import tqdm
from utils import *
import ipdb
class Model_2_1(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(in_features=500, out_features=1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.linear(x)
x = self.sigmoid(x)
return x
class My_Regression_Dataset(Dataset):
def __init__(self, train=True):
data_size = 7000 if train else 3000
np.random.seed(0)
x = np.random.random((data_size, 500)) * 0.005
noise = np.random.randn(data_size) * 1e-7
y = 0.028 - 0.0056 * x.sum(axis=1) + noise
y = y.reshape(-1, 1)
self.data = [[x[i], y[i]] for i in range(x.shape[0])]
def __len__(self):
return len(self.data)
def __getitem__(self, index):
x, y = self.data[index]
x = torch.FloatTensor(x)
y = torch.FloatTensor(y)
return x, y
if __name__ == "__main__":
learning_rate = 5
num_epochs = 10
batch_size = 512
device = "cuda:0" if torch.cuda.is_available() else "cpu"
train_regression_dataset = My_Regression_Dataset(train=True)
test_regression_dataset = My_Regression_Dataset(train=False)
train_dataloader = DataLoader(
dataset=train_regression_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
test_dataloader = DataLoader(
dataset=test_regression_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
model = Model_2_1().to(device)
criterion = nn.BCELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
model.train()
total_epoch_loss = 0
start_time = time.time()
for index, (x, targets) in tqdm(enumerate(train_dataloader), total=len(train_dataloader)):
optimizer.zero_grad()
x = x.to(device)
targets = targets.to(device)
y_pred = model(x)
loss = criterion(y_pred, targets)
total_epoch_loss += loss.item()
loss.backward()
optimizer.step()
end_time = time.time()
train_time = end_time - start_time
model.eval()
with torch.no_grad():
total_epoch_acc = 0
start_time = time.time()
for index, (x, targets) in tqdm(enumerate(test_dataloader), total=len(test_dataloader)):
x = x.to(device)
targets = targets.to(device)
y_pred = model(x)
total_epoch_acc += (1 - torch.abs(y_pred - targets) / torch.abs(targets)).sum().item()
end_time = time.time()
test_time = end_time - start_time
avg_epoch_acc = total_epoch_acc / len(test_regression_dataset)
print(
f"Epoch [{epoch + 1}/{num_epochs}],",
f"Train Loss: {total_epoch_loss},",
f"Used Time: {train_time * 1000:.3f}ms,",
f"Test Acc: {avg_epoch_acc * 100:.3f}%,",
f"Used Time: {test_time * 1000:.3f}ms",
)

118
Lab2/code/2.2.py Normal file
View File

@ -0,0 +1,118 @@
import time
import numpy as np
import torch
from torch.nn.functional import one_hot, softmax
from torch.utils.data import Dataset, DataLoader
from torch import nn
from torchvision import datasets, transforms
from tqdm import tqdm
from utils import *
import ipdb
class Model_2_1(nn.Module):
def __init__(self):
super().__init__()
self.fc = nn.Linear(in_features=200, out_features=1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.fc(x)
x = self.sigmoid(x)
return x
class My_BinaryCLS_Dataset(Dataset):
def __init__(self, train=True, num_features=200):
num_samples = 7000 if train else 3000
x_1 = np.random.normal(loc=-0.5, scale=0.2, size=(num_samples, num_features))
x_2 = np.random.normal(loc=0.5, scale=0.2, size=(num_samples, num_features))
labels_1 = np.zeros((num_samples, 1))
labels_2 = np.ones((num_samples, 1))
x = np.concatenate((x_1, x_2), axis=0)
labels = np.concatenate((labels_1, labels_2), axis=0)
self.data = [[x[i], labels[i]] for i in range(2 * num_samples)]
def __len__(self):
return len(self.data)
def __getitem__(self, index):
x, y = self.data[index]
x = torch.FloatTensor(x)
y = torch.LongTensor(y)
return x, y
if __name__ == "__main__":
learning_rate = 1e-4
num_epochs = 10
batch_size = 512
device = "cuda:0" if torch.cuda.is_available() else "cpu"
train_binarycls_dataset = My_BinaryCLS_Dataset(train=True)
test_binarycls_dataset = My_BinaryCLS_Dataset(train=False)
train_dataloader = DataLoader(
dataset=train_binarycls_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
test_dataloader = DataLoader(
dataset=test_binarycls_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
model = Model_2_1().to(device)
criterion = nn.BCELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
model.train()
total_epoch_loss = 0
start_time = time.time()
for index, (x, targets) in tqdm(enumerate(train_dataloader), total=len(train_dataloader)):
optimizer.zero_grad()
x = x.to(device)
targets = targets.to(device).to(dtype=torch.float32)
y_pred = model(x)
loss = criterion(y_pred, targets)
total_epoch_loss += loss.item()
loss.backward()
optimizer.step()
end_time = time.time()
train_time = end_time - start_time
model.eval()
with torch.no_grad():
total_epoch_acc = 0
start_time = time.time()
for index, (x, targets) in tqdm(enumerate(test_dataloader), total=len(test_dataloader)):
x = x.to(device)
targets = targets.to(device)
output = model(x)
pred = (output > 0.5).to(dtype=torch.long)
total_epoch_acc += (pred == targets).sum().item()
end_time = time.time()
test_time = end_time - start_time
avg_epoch_acc = total_epoch_acc / len(test_binarycls_dataset)
print(
f"Epoch [{epoch + 1}/{num_epochs}],",
f"Train Loss: {total_epoch_loss},",
f"Used Time: {train_time * 1000:.3f}ms,",
f"Test Acc: {avg_epoch_acc * 100:.3f}%,",
f"Used Time: {test_time * 1000:.3f}ms",
)

106
Lab2/code/2.3.py Normal file
View File

@ -0,0 +1,106 @@
import time
import numpy as np
import torch
from torch.nn.functional import one_hot, softmax
from torch.utils.data import Dataset, DataLoader
from torch import nn
from torchvision import datasets, transforms
from tqdm import tqdm
from utils import *
import ipdb
class Model_2_3(nn.Module):
def __init__(self, num_classes):
super().__init__()
self.flatten = nn.Flatten()
self.linear = nn.Linear(in_features=28 * 28, out_features=num_classes)
def forward(self, x: torch.Tensor):
x = self.flatten(x)
x = self.linear(x)
return x
if __name__ == "__main__":
learning_rate = 5e-2
num_epochs = 10
batch_size = 512
num_classes = 10
device = "cuda:0" if torch.cuda.is_available() else "cpu"
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,)),
]
)
train_mnist_dataset = datasets.MNIST(root="../dataset", train=True, transform=transform, download=True)
test_mnist_dataset = datasets.MNIST(root="../dataset", train=False, transform=transform, download=True)
train_loader = DataLoader(
dataset=train_mnist_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
test_loader = DataLoader(
dataset=test_mnist_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
model = Model_2_3(num_classes).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
model.train()
total_epoch_loss = 0
start_time = time.time()
for index, (images, targets) in tqdm(
enumerate(train_loader), total=len(train_loader)
):
optimizer.zero_grad()
images = images.to(device)
targets = targets.to(device)
one_hot_targets = one_hot(targets, num_classes=num_classes).to(dtype=torch.float)
outputs = model(images)
loss = criterion(outputs, one_hot_targets)
total_epoch_loss += loss.item()
loss.backward()
optimizer.step()
end_time = time.time()
train_time = end_time - start_time
model.eval()
with torch.no_grad():
total_epoch_acc = 0
start_time = time.time()
for index, (image, targets) in tqdm(
enumerate(test_loader), total=len(test_loader)
):
image = image.to(device)
targets = targets.to(device)
outputs = model(image)
pred = softmax(outputs, dim=1)
total_epoch_acc += (pred.argmax(1) == targets).sum().item()
end_time = time.time()
test_time = end_time - start_time
avg_epoch_acc = total_epoch_acc / len(test_mnist_dataset)
print(
f"Epoch [{epoch + 1}/{num_epochs}],",
f"Train Loss: {total_epoch_loss},",
f"Used Time: {train_time * 1000:.3f}ms,",
f"Test Acc: {avg_epoch_acc * 100:.3f}%,",
f"Used Time: {test_time * 1000:.3f}ms",
)

105
Lab2/code/utils.py Normal file
View File

@ -0,0 +1,105 @@
import time
import numpy as np
import torch
from torch.nn.functional import one_hot, softmax
from torch.utils.data import Dataset, DataLoader
from torch import nn
from torchvision import datasets, transforms
from tqdm import tqdm
import ipdb
# 手动实现torch.nn.functional.one_hot
def my_one_hot(indices: torch.Tensor, num_classes: int):
one_hot_tensor = torch.zeros(len(indices), num_classes, dtype=torch.long).to(indices.device)
one_hot_tensor.scatter_(1, indices.view(-1, 1), 1)
return one_hot_tensor
# 手动实现torch.nn.functional.softmax
def my_softmax(predictions: torch.Tensor, dim: int):
max_values = torch.max(predictions, dim=dim, keepdim=True).values
exp_values = torch.exp(predictions - max_values)
softmax_output = exp_values / torch.sum(exp_values, dim=dim, keepdim=True)
return softmax_output
# 手动实现torch.nn.Linear
class My_Linear:
def __init__(self, in_features: int, out_features: int):
self.weight = torch.normal(mean=0.001, std=0.5, size=(out_features, in_features), requires_grad=True, dtype=torch.float32)
self.bias = torch.normal(mean=0.001, std=0.5, size=(1,), requires_grad=True, dtype=torch.float32)
self.params = [self.weight, self.bias]
def __call__(self, x):
return self.forward(x)
def forward(self, x):
x = torch.matmul(x, self.weight.T) + self.bias
return x
def to(self, device: str):
for param in self.params:
param.data = param.data.to(device=device)
return self
def parameters(self):
return self.params
# 手动实现torch.nn.Flatten
class My_Flatten:
def __call__(self, x: torch.Tensor):
x = x.view(x.shape[0], -1)
return x
# 手动实现torch.nn.ReLU
class My_ReLU():
def __call__(self, x: torch.Tensor):
x = torch.max(x, torch.tensor(0.0, device=x.device))
return x
# 手动实现torch.nn.Sigmoid
class My_Sigmoid():
def __call__(self, x: torch.Tensor):
x = 1. / (1. + torch.exp(-x))
return x
# 手动实现torch.nn.BCELoss
class My_BCELoss:
def __call__(self, prediction: torch.Tensor, target: torch.Tensor):
loss = -torch.mean(target * torch.log(prediction) + (1 - target) * torch.log(1 - prediction))
return loss
# 手动实现torch.nn.CrossEntropyLoss
class My_CrossEntropyLoss:
def __call__(self, predictions: torch.Tensor, targets: torch.Tensor):
max_values = torch.max(predictions, dim=1, keepdim=True).values
exp_values = torch.exp(predictions - max_values)
softmax_output = exp_values / torch.sum(exp_values, dim=1, keepdim=True)
log_probs = torch.log(softmax_output)
nll_loss = -torch.sum(targets * log_probs, dim=1)
average_loss = torch.mean(nll_loss)
return average_loss
# 手动实现torch.optim.SGD
class My_optimizer:
def __init__(self, params: list[torch.Tensor], lr: float):
self.params = params
self.lr = lr
def step(self):
with torch.no_grad():
for param in self.params:
param.data = param.data - self.lr * param.grad.data
def zero_grad(self):
for param in self.params:
if param.grad is not None:
param.grad.data = torch.zeros_like(param.grad.data)

File diff suppressed because one or more lines are too long