from utils import * class Model_Vehicle_CLS_1_3_1(nn.Module): def __init__(self, num_classes=3): super(Model_Vehicle_CLS_1_3_1, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=512, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(512), ) self.fc = nn.Linear(in_features=512, out_features=num_classes) def forward(self, x): x = F.relu(self.conv1(x)) x = F.avg_pool2d(x, 32) x = x.view(x.size(0), -1) x = self.fc(x) return x class Model_Vehicle_CLS_1_3_2(nn.Module): def __init__(self, num_classes=3): super(Model_Vehicle_CLS_1_3_2, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=128, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(128), ) self.conv2 = nn.Sequential( nn.Conv2d(in_channels=128, out_channels=512, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(512), ) self.fc = nn.Linear(in_features=512, out_features=num_classes, bias=False) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = F.avg_pool2d(x, 32) x = x.view(x.size(0), -1) x = self.fc(x) return x class Model_Vehicle_CLS_1_3_3(nn.Module): def __init__(self, num_classes=3): super(Model_Vehicle_CLS_1_3_3, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(64), ) self.conv2 = nn.Sequential( nn.Conv2d(in_channels=64, out_channels=256, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(256), ) self.conv3 = nn.Sequential( nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(512), ) self.fc = nn.Linear(in_features=512, out_features=num_classes) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = F.relu(self.conv3(x)) x = F.avg_pool2d(x, 32) x = x.view(x.size(0), -1) x = self.fc(x) return x class Model_Vehicle_CLS_1_3_4(nn.Module): def __init__(self, num_classes=3): super(Model_Vehicle_CLS_1_3_4, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=64, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(64), ) self.conv2 = nn.Sequential( nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(128), ) self.conv3 = nn.Sequential( nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(256), ) self.conv4 = nn.Sequential( nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(512), ) self.fc = nn.Linear(in_features=512, out_features=num_classes) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = F.relu(self.conv3(x)) x = F.relu(self.conv4(x)) x = F.avg_pool2d(x, 32) x = x.view(x.size(0), -1) x = self.fc(x) return x class Model_Haze_Removal_1_3_1(nn.Module): def __init__(self): super(Model_Haze_Removal_1_3_1, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(16), ) self.conv2 = nn.Sequential( nn.Conv2d(in_channels=16, out_channels=48, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(48), ) self.conv3 = nn.Conv2d(in_channels=48, out_channels=3, kernel_size=3, padding=1) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = self.conv3(x) return x class Model_Haze_Removal_1_3_2(nn.Module): def __init__(self): super(Model_Haze_Removal_1_3_2, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=16, kernel_size=5, padding=2, bias=False), nn.BatchNorm2d(16), ) self.conv2 = nn.Sequential( nn.Conv2d(in_channels=16, out_channels=48, kernel_size=5, padding=2, bias=False), nn.BatchNorm2d(48), ) self.conv3 = nn.Conv2d(in_channels=48, out_channels=3, kernel_size=5, padding=2) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = self.conv3(x) return x class Model_Haze_Removal_1_3_3(nn.Module): def __init__(self): super(Model_Haze_Removal_1_3_3, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=16, kernel_size=7, padding=3, bias=False), nn.BatchNorm2d(16), nn.ReLU(inplace=True), ) self.conv2 = nn.Sequential( nn.Conv2d(in_channels=16, out_channels=48, kernel_size=7, padding=3, bias=False), nn.BatchNorm2d(48), nn.ReLU(inplace=True), ) self.conv3 = nn.Conv2d(in_channels=48, out_channels=3, kernel_size=7, padding=3) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = self.conv3(x) return x class Model_Haze_Removal_1_3_4(nn.Module): def __init__(self): super(Model_Haze_Removal_1_3_4, self).__init__() self.conv1 = nn.Sequential( nn.Conv2d(in_channels=3, out_channels=16, kernel_size=9, padding=4, bias=False), nn.BatchNorm2d(16), nn.ReLU(inplace=True), ) self.conv2 = nn.Sequential( nn.Conv2d(in_channels=16, out_channels=48, kernel_size=9, padding=4, bias=False), nn.BatchNorm2d(48), nn.ReLU(inplace=True), ) self.conv3 = nn.Conv2d(in_channels=48, out_channels=3, kernel_size=9, padding=4) def forward(self, x): x = F.relu(self.conv1(x)) x = F.relu(self.conv2(x)) x = self.conv3(x) return x if __name__ == "__main__": num_epochs = 61 learning_rate = 2e-4 batch_size = 256 models = [ Model_Vehicle_CLS_1_3_1, Model_Vehicle_CLS_1_3_2, Model_Vehicle_CLS_1_3_3, Model_Vehicle_CLS_1_3_4, ] for i in range(4): model = models[i]() print(f"卷积层层数={i + 1}") train_loss, test_acc = train_Vehicle_CLS(model=model, learning_rate=learning_rate, batch_size=batch_size, num_epochs=num_epochs) print() num_epochs = 61 learning_rate = 8e-3 batch_size = 64 models = [ Model_Haze_Removal_1_3_1, Model_Haze_Removal_1_3_2, Model_Haze_Removal_1_3_3, Model_Haze_Removal_1_3_4, ] for i in range(4): model = models[i]() print(f"卷积核大小={3 + 2 * i}") train_loss, test_loss = train_Haze_Removal(model=model, learning_rate=learning_rate, batch_size=batch_size, num_epochs=num_epochs) print()