import time import numpy as np import torch from torch.nn.functional import * from torch.utils.data import Dataset, DataLoader from torch import nn from torchvision import datasets, transforms from tqdm import tqdm from utils import * import ipdb class Model_2_1(nn.Module): def __init__(self): super().__init__() self.fc = nn.Linear(in_features=200, out_features=1) self.sigmoid = nn.Sigmoid() def forward(self, x): x = self.fc(x) x = self.sigmoid(x) return x class My_BinaryCLS_Dataset(Dataset): def __init__(self, train=True, num_features=200): num_samples = 7000 if train else 3000 x_1 = np.random.normal(loc=-0.5, scale=0.2, size=(num_samples, num_features)) x_2 = np.random.normal(loc=0.5, scale=0.2, size=(num_samples, num_features)) labels_1 = np.zeros((num_samples, 1)) labels_2 = np.ones((num_samples, 1)) x = np.concatenate((x_1, x_2), axis=0) labels = np.concatenate((labels_1, labels_2), axis=0) self.data = [[x[i], labels[i]] for i in range(2 * num_samples)] def __len__(self): return len(self.data) def __getitem__(self, index): x, y = self.data[index] x = torch.FloatTensor(x) y = torch.LongTensor(y) return x, y if __name__ == "__main__": learning_rate = 1e-4 num_epochs = 10 batch_size = 512 device = "cuda:0" if torch.cuda.is_available() else "cpu" train_binarycls_dataset = My_BinaryCLS_Dataset(train=True) test_binarycls_dataset = My_BinaryCLS_Dataset(train=False) train_dataloader = DataLoader( dataset=train_binarycls_dataset, batch_size=batch_size, shuffle=True, num_workers=14, pin_memory=True, ) test_dataloader = DataLoader( dataset=test_binarycls_dataset, batch_size=batch_size, shuffle=True, num_workers=14, pin_memory=True, ) model = Model_2_1().to(device) criterion = nn.BCELoss() optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) for epoch in range(num_epochs): model.train() total_epoch_loss = 0 start_time = time.time() for index, (x, targets) in tqdm(enumerate(train_dataloader), total=len(train_dataloader)): optimizer.zero_grad() x = x.to(device) targets = targets.to(device).to(dtype=torch.float32) y_pred = model(x) loss = criterion(y_pred, targets) total_epoch_loss += loss.item() loss.backward() optimizer.step() end_time = time.time() train_time = end_time - start_time model.eval() with torch.no_grad(): total_epoch_acc = 0 start_time = time.time() for index, (x, targets) in tqdm(enumerate(test_dataloader), total=len(test_dataloader)): x = x.to(device) targets = targets.to(device) output = model(x) pred = (output > 0.5).to(dtype=torch.long) total_epoch_acc += (pred == targets).sum().item() end_time = time.time() test_time = end_time - start_time avg_epoch_acc = total_epoch_acc / len(test_binarycls_dataset) print( f"Epoch [{epoch + 1}/{num_epochs}],", f"Train Loss: {total_epoch_loss},", f"Used Time: {train_time * 1000:.3f}ms,", f"Test Acc: {avg_epoch_acc * 100:.3f}%,", f"Used Time: {test_time * 1000:.3f}ms", )