import numpy as np import torch from utils import * if __name__ == "__main__": learning_rate = 8e-2 num_epochs = 101 color = ["blue", "green", "orange", "purple"] for i in np.arange(4): weight_decay_rate = i / 4 * 0.01 model = MNIST_CLS_Model(num_classes=10, dropout_rate=0) optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, weight_decay=weight_decay_rate) print(f"weight_decay_rate={weight_decay_rate}") train_loss, test_acc = train_MNIST_CLS(model, optimizer, num_epochs=num_epochs)