import torch from utils import * class My_SGD: def __init__(self, params: list[torch.Tensor], lr: float, weight_decay=0.0): self.params = params self.lr = lr self.weight_decay = weight_decay def step(self): with torch.no_grad(): for param in self.params: if param.grad is not None: if len(param.data.shape) > 1: param.data = param.data - self.lr * (param.grad + self.weight_decay * param.data) else: param.data = param.data - self.lr * param.grad def zero_grad(self): for param in self.params: if param.grad is not None: param.grad.data = torch.zeros_like(param.grad.data) if __name__ == "__main__": params1 = torch.tensor([[1.0, 2.0]], requires_grad=True) params2 = torch.tensor([[1.0, 2.0]], requires_grad=True) my_sgd = My_SGD(params=[params1], lr=0.5, weight_decay=0.1) optim_sgd = torch.optim.SGD(params=[params2], lr=0.5, weight_decay=0.1) my_sgd.zero_grad() optim_sgd.zero_grad() loss1 = 2 * params1.sum() loss2 = 2 * params2.sum() # 偏导为2 loss1.backward() loss2.backward() print("params1的梯度为:\n", params1.grad.data) print("params2的梯度为:\n", params2.grad.data) my_sgd.step() optim_sgd.step() # 结果为:w - lr * grad - lr * weight_decay_rate * w # w[0] = 1 - 0.5 * 2 - 0.5 * 0.1 * 1 = -0.0500 # w[1] = 2 - 0.5 * 2 - 0.5 * 0.1 * 2 = 0.9000 print("经过L_2正则化后的My_SGD反向传播结果:\n", params1.data) print("经过L_2正则化后的torch.optim.SGD反向传播结果:\n", params2.data)