import numpy as np import pandas as pd import torch import torch.utils.data as data import warnings warnings.filterwarnings("ignore") # 定义dataset class my_Dataset(data.Dataset): def __init__(self, features, labels): self.seqs = features self.targets = labels def __getitem__(self, index): return self.seqs[index], self.targets[index] def __len__(self): return self.seqs.shape[0] # 空气质量数据集 class KrakowDataset: def __init__(self, sensor:int=171, is_resample:bool=True): # 选取几个月个月的数据 self.month = ['april-2017', 'august-2017', 'december-2017', 'february-2017', 'january-2017', 'july-2017', 'june-2017', 'march-2017', 'may-2017', 'november-2017', 'october-2017', 'september-2017'] raw_data = pd.concat([pd.read_csv(f'./dataset/Krakow-airquality/raw/{month}.csv') for month in self.month]) # 确定特征列 features = ['temperature', 'humidity', 'pressure', 'pm1', 'pm25', 'pm10'] self.sensor = sensor # 选取探测器,并非每个探测器都有数据 self.feature_col = ['UTC time'] + [f'{self.sensor}_{fea}' for fea in features] data_df = raw_data[[col for col in raw_data.columns if col in self.feature_col]] # 按时间戳排序 data_df['UTC time'] = pd.to_datetime(data_df['UTC time']) data_df = data_df.set_index('UTC time').sort_index() # 重采样、插分 if is_resample: self.start_time, self.end_time = data_df.index.min(), data_df.index.max() full_index = pd.date_range(self.start_time, self.end_time, freq='h') data_df = data_df.reindex(full_index) data_df = data_df.interpolate(method='linear') else: data_df = data_df.dropna() # 数据标准化 self.min = data_df.min() self.max = data_df.max() self.data = (data_df - self.min) / (self.max - self.min) def denormalize(self, x): key = f'{self.sensor}_{self.target}' return x * (self.max[key] - self.min[key]) + self.min[key] def construct_set(self, train_por=0.6, test_por=0.2, window_size=12, target='pm25'): train_x = [] train_y = [] val_x = [] val_y = [] test_x = [] test_y = [] self.target = target self.feature_col.remove('UTC time') self.data = self.data.reset_index() len_train = int(self.data.shape[0] * train_por) train_seqs = self.data[:len_train] for i in range(train_seqs.shape[0] - window_size): train_seq = train_seqs.loc[i:i + window_size] train_x.append(train_seq.loc[i:i + window_size - 1][self.feature_col].values.tolist()) train_y.append(train_seq.loc[i + window_size][f'{self.sensor}_{target}'].tolist()) len_val = int(self.data.shape[0] * (train_por + test_por)) val_seqs = self.data[len_train:len_val] val_seqs = val_seqs.reset_index() for i in range(val_seqs.shape[0] - window_size): val_seq = val_seqs.loc[i:i + window_size] val_x.append(val_seq.loc[i:i + window_size - 1][self.feature_col].values.tolist()) val_y.append(val_seq.loc[i + window_size][f'{self.sensor}_{target}'].tolist()) test_seqs = self.data[len_val:] test_seqs = test_seqs.reset_index() for i in range(test_seqs.shape[0] - window_size): test_seq = test_seqs.loc[i:i + window_size] test_x.append(test_seq.loc[i:i + window_size - 1][self.feature_col].values.tolist()) test_y.append(test_seq.loc[i + window_size][f'{self.sensor}_{target}'].tolist()) train_set = my_Dataset(torch.Tensor(train_x), torch.Tensor(train_y)) val_set = my_Dataset(torch.Tensor(val_x), torch.Tensor(val_y)) test_set = my_Dataset(torch.Tensor(test_x), torch.Tensor(test_y)) return train_set, val_set, test_set class TrafficDataset: def __init__(self, sensor=10, target=0): # 选取适当的检测器用作序列数据 self.raw_data = np.load('./dataset/traffic-flow/raw/traffic.npz')['data'] self.sensor = sensor self.target = target # 数据标准化 self.min = self.raw_data.min() self.max = self.raw_data.max() self.data = (self.raw_data - self.min) / (self.max - self.min) def denormalize(self, x): return x * (self.max - self.min) + self.min def construct_set(self, train_por=0.6, test_por=0.2, window_size=12, label=0): train_x = [] train_y = [] val_x = [] val_y = [] test_x = [] test_y = [] len_train = int(self.data.shape[0] * train_por) train_seqs = self.data[0:len_train, self.sensor, :] for i in range(len_train - window_size): train_x.append(train_seqs[i:i + window_size - 1]) train_y.append(train_seqs[i + window_size][label]) len_val = int(self.data.shape[0] * test_por) val_seqs = self.data[len_train:len_train + len_val, self.sensor, :] for i in range(len_val - window_size): val_x.append(val_seqs[i:i + window_size - 1]) val_y.append(val_seqs[i + window_size][label]) len_test = int(self.data.shape[0] * (1 - train_por - test_por)) test_seqs = self.data[len_train + len_val:, self.sensor, :] for i in range(len_test - window_size): test_x.append(test_seqs[i:i + window_size - 1]) test_y.append(test_seqs[i + window_size][label]) train_set = my_Dataset(torch.Tensor(train_x), torch.Tensor(train_y)) val_set = my_Dataset(torch.Tensor(val_x), torch.Tensor(val_y)) test_set = my_Dataset(torch.Tensor(test_x), torch.Tensor(test_y)) return train_set, val_set, test_set