import numpy as np import torch from utils import * if __name__ == "__main__": learning_rate = 8e-2 num_epochs = 101 for i in np.arange(3): dropout_rate = 0.1 + 0.4 * i model = MNIST_CLS_Model(num_classes=10, dropout_rate=dropout_rate) optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate) print(f"dropout_rate={dropout_rate}") train_loss, test_acc = train_MNIST_CLS(model, optimizer, num_epochs=num_epochs)