import time import numpy as np import torch from torch.nn.functional import * from torch.utils.data import Dataset, DataLoader from torch import nn from torchvision import datasets, transforms from tqdm import tqdm from utils import * import ipdb class Model_4_1(nn.Module): def __init__(self, num_classes): super().__init__() self.flatten = nn.Flatten() self.fc1 = nn.Linear(in_features=28 * 28, out_features=512) self.fc2 = nn.Linear(in_features=512, out_features=num_classes) self.activate_fn = leaky_relu def forward(self, x: torch.Tensor): x = self.flatten(x) x = self.fc1(x) x = self.activate_fn(x) x = self.fc2(x) x = self.activate_fn(x) return x class Model_4_2(nn.Module): def __init__(self, num_classes): super().__init__() self.flatten = nn.Flatten() self.fc1 = nn.Linear(in_features=28 * 28, out_features=1024) self.fc2 = nn.Linear(in_features=1024, out_features=num_classes) self.activate_fn = leaky_relu def forward(self, x: torch.Tensor): x = self.flatten(x) x = self.fc1(x) x = self.activate_fn(x) x = self.fc2(x) x = self.activate_fn(x) return x class Model_4_3(nn.Module): def __init__(self, num_classes): super().__init__() self.flatten = nn.Flatten() self.fc1 = nn.Linear(in_features=28 * 28, out_features=512) self.fc2 = nn.Linear(in_features=512, out_features=512) self.fc3 = nn.Linear(in_features=512, out_features=num_classes) self.activate_fn = leaky_relu def forward(self, x: torch.Tensor): x = self.flatten(x) x = self.fc1(x) x = self.activate_fn(x) x = self.fc2(x) x = self.activate_fn(x) x = self.fc3(x) x = self.activate_fn(x) return x class Model_4_4(nn.Module): def __init__(self, num_classes): super().__init__() self.flatten = nn.Flatten() self.fc1 = nn.Linear(in_features=28 * 28, out_features=1024) self.fc2 = nn.Linear(in_features=1024, out_features=1024) self.fc3 = nn.Linear(in_features=1024, out_features=num_classes) self.activate_fn = leaky_relu def forward(self, x: torch.Tensor): x = self.flatten(x) x = self.fc1(x) x = self.activate_fn(x) x = self.fc2(x) x = self.activate_fn(x) x = self.fc3(x) x = self.activate_fn(x) return x if __name__ == "__main__": print("模型1开始训练,hidden_size=512,hidden_layer=1 :") train_loss_4_1, test_acc_4_1 = train_MNIST_CLS(Model=Model_4_1) # hidden_size=512, hidden_layer=1 print("模型2开始训练,hidden_size=1024,hidden_layer=1 :") train_loss_4_2, test_acc_4_2 = train_MNIST_CLS(Model=Model_4_2) # hidden_size=1024, hidden_layer=1 print("模型3开始训练,hidden_size=512,hidden_layer=2 :") train_loss_4_3, test_acc_4_3 = train_MNIST_CLS(Model=Model_4_3) # hidden_size=512, hidden_layer=2 print("模型4开始训练,hidden_size=1024,hidden_layer=2 :") train_loss_4_4, test_acc_4_4 = train_MNIST_CLS(Model=Model_4_4) # hidden_size=1024, hidden_layer=2