from utils import * import ipdb class My_Conv2d(nn.Module): def __init__(self, in_channels:int, out_channels:int, kernel_size:int, padding:int=0, bias=True): super(My_Conv2d, self).__init__() self.has_bias = bias self.in_channels = in_channels self.out_channels = out_channels self.kernel_size = kernel_size self.padding = padding self.weight = nn.Parameter(torch.Tensor(out_channels, in_channels, kernel_size, kernel_size)) nn.init.xavier_uniform_(self.weight) if self.has_bias: self.bias = nn.Parameter(torch.zeros(out_channels, requires_grad=True, dtype=torch.float32)) def forward(self, x): batch_size, _, input_height, input_width = x.shape if self.padding > 0: x = F.pad(x, (self.padding, self.padding, self.padding, self.padding)) x = F.unfold(x, kernel_size=self.kernel_size) x = x.permute(0, 2, 1).contiguous() weight_unfold = self.weight.view(self.out_channels, -1).t() x = torch.matmul(x, weight_unfold) if self.has_bias: x += self.bias output_height = input_height + 2 * self.padding - self.kernel_size + 1 output_width = input_width + 2 * self.padding - self.kernel_size + 1 x = x.view(batch_size, output_height, output_width, self.out_channels).permute(0, 3, 1, 2).contiguous() return x class Model_Vehicle_CLS_1_1(nn.Module): def __init__(self, num_classes=3): super(Model_Vehicle_CLS_1_1, self).__init__() self.conv1 = My_Conv2d(in_channels=3, out_channels=128, kernel_size=3, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(128) self.conv2 = My_Conv2d(in_channels=128, out_channels=512, kernel_size=3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(512) self.fc = nn.Linear(in_features=512, out_features=num_classes) def forward(self, x): x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x = F.avg_pool2d(x, 32) x = x.view(x.size(0), -1) x = self.fc(x) return x class Model_Haze_Removal_1_1(nn.Module): def __init__(self): super(Model_Haze_Removal_1_1, self).__init__() self.conv1 = My_Conv2d(in_channels=3, out_channels=16, kernel_size=3, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(16) self.conv2 = My_Conv2d(in_channels=16, out_channels=48, kernel_size=5, padding=2, bias=False) self.bn2 = nn.BatchNorm2d(48) self.conv3 = My_Conv2d(in_channels=48, out_channels=3, kernel_size=3, padding=1) def forward(self, x): x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x = self.conv3(x) return x if __name__ == "__main__": model = Model_Vehicle_CLS_1_1() train_Vehicle_CLS(model=model, learning_rate=4e-4, batch_size=256) model = Model_Haze_Removal_1_1() train_Haze_Removal(model=model, learning_rate=5e-3, batch_size=16)