import time import numpy as np import torch from torch.nn.functional import * from torch.utils.data import Dataset, DataLoader from torch import nn from torchvision import datasets, transforms from tqdm import tqdm from utils import * import ipdb class Model_1_3: def __init__(self, num_classes): self.flatten = My_Flatten() self.linear = My_Linear(in_features=28 * 28, out_features=num_classes) self.params = self.linear.params def __call__(self, x: torch.Tensor): return self.forward(x) def forward(self, x: torch.Tensor): x = self.flatten(x) x = self.linear(x) return x def to(self, device: str): for param in self.params: param.data = param.data.to(device=device) return self def parameters(self): return self.params def train(self): for param in self.params: param.requires_grad = True def eval(self): for param in self.params: param.requires_grad = False if __name__ == "__main__": learning_rate = 1e-1 num_epochs = 10 batch_size = 512 num_classes = 10 device = "cuda:0" if torch.cuda.is_available() else "cpu" transform = transforms.Compose( [ transforms.ToTensor(), transforms.Normalize((0.5,), (0.5,)), ] ) train_mnist_dataset = datasets.MNIST(root="../dataset", train=True, transform=transform, download=True) test_mnist_dataset = datasets.MNIST(root="../dataset", train=False, transform=transform, download=True) train_loader = DataLoader( dataset=train_mnist_dataset, batch_size=batch_size, shuffle=True, num_workers=14, pin_memory=True, ) test_loader = DataLoader( dataset=test_mnist_dataset, batch_size=batch_size, shuffle=True, num_workers=14, pin_memory=True, ) model = Model_1_3(num_classes).to(device) criterion = My_CrossEntropyLoss() optimizer = My_optimizer(model.parameters(), lr=learning_rate) for epoch in range(num_epochs): model.train() total_epoch_loss = 0 start_time = time.time() for index, (images, targets) in tqdm( enumerate(train_loader), total=len(train_loader) ): optimizer.zero_grad() images = images.to(device) targets = targets.to(device) one_hot_targets = my_one_hot(targets, num_classes=num_classes).to(dtype=torch.float) outputs = model(images) loss = criterion(outputs, one_hot_targets) total_epoch_loss += loss.item() loss.backward() optimizer.step() end_time = time.time() train_time = end_time - start_time model.eval() with torch.no_grad(): total_epoch_acc = 0 start_time = time.time() for index, (image, targets) in tqdm( enumerate(test_loader), total=len(test_loader) ): image = image.to(device) targets = targets.to(device) outputs = model(image) pred = my_softmax(outputs, dim=1) total_epoch_acc += (pred.argmax(1) == targets).sum().item() end_time = time.time() test_time = end_time - start_time avg_epoch_acc = total_epoch_acc / len(test_mnist_dataset) print( f"Epoch [{epoch + 1}/{num_epochs}],", f"Train Loss: {total_epoch_loss:.10f},", f"Used Time: {train_time * 1000:.3f}ms,", f"Test Acc: {avg_epoch_acc * 100:.3f}%,", f"Used Time: {test_time * 1000:.3f}ms", )