from utils import * import ipdb class Model_Vehicle_CLS_1_2(nn.Module): def __init__(self, num_classes=3): super(Model_Vehicle_CLS_1_2, self).__init__() self.conv1 = nn.Conv2d(in_channels=3, out_channels=128, kernel_size=3, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(128) self.conv2 = nn.Conv2d(in_channels=128, out_channels=512, kernel_size=3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(512) self.fc = nn.Linear(in_features=512, out_features=num_classes) def forward(self, x): x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x = F.avg_pool2d(x, 32) x = x.view(x.size(0), -1) x = self.fc(x) return x class Model_Haze_Removal_1_2(nn.Module): def __init__(self): super(Model_Haze_Removal_1_2, self).__init__() self.conv1 = nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(16) self.conv2 = nn.Conv2d(in_channels=16, out_channels=48, kernel_size=5, padding=2, bias=False) self.bn2 = nn.BatchNorm2d(48) self.conv3 = nn.Conv2d(in_channels=48, out_channels=3, kernel_size=3, padding=1) def forward(self, x): x = F.relu(self.bn1(self.conv1(x))) x = F.relu(self.bn2(self.conv2(x))) x = self.conv3(x) return x if __name__ == "__main__": model = Model_Vehicle_CLS_1_2() train_Vehicle_CLS(model=model, learning_rate=4e-4, batch_size=64) model = Model_Haze_Removal_1_2() train_Haze_Removal(model=model, learning_rate=5e-3, batch_size=16)