2023-10-24 20:15:43 +08:00

126 lines
3.7 KiB
Python

import time
import numpy as np
import torch
from torch.nn.functional import *
from torch.utils.data import Dataset, DataLoader
from torch import nn
from torchvision import datasets, transforms
from tqdm import tqdm
from utils import *
import ipdb
class Model_1_3:
def __init__(self, num_classes):
self.flatten = My_Flatten()
self.linear = My_Linear(in_features=28 * 28, out_features=num_classes)
self.params = self.linear.params
def __call__(self, x: torch.Tensor):
return self.forward(x)
def forward(self, x: torch.Tensor):
x = self.flatten(x)
x = self.linear(x)
return x
def to(self, device: str):
for param in self.params:
param.data = param.data.to(device=device)
return self
def parameters(self):
return self.params
def train(self):
for param in self.params:
param.requires_grad = True
def eval(self):
for param in self.params:
param.requires_grad = False
if __name__ == "__main__":
learning_rate = 1e-1
num_epochs = 10
batch_size = 512
num_classes = 10
device = "cuda:0" if torch.cuda.is_available() else "cpu"
transform = transforms.Compose(
[
transforms.ToTensor(),
transforms.Normalize((0.5,), (0.5,)),
]
)
train_mnist_dataset = datasets.MNIST(root="../dataset", train=True, transform=transform, download=True)
test_mnist_dataset = datasets.MNIST(root="../dataset", train=False, transform=transform, download=True)
train_loader = DataLoader(
dataset=train_mnist_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
test_loader = DataLoader(
dataset=test_mnist_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
model = Model_1_3(num_classes).to(device)
criterion = My_CrossEntropyLoss()
optimizer = My_optimizer(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
model.train()
total_epoch_loss = 0
start_time = time.time()
for index, (images, targets) in tqdm(
enumerate(train_loader), total=len(train_loader)
):
optimizer.zero_grad()
images = images.to(device)
targets = targets.to(device)
one_hot_targets = my_one_hot(targets, num_classes=num_classes).to(dtype=torch.float)
outputs = model(images)
loss = criterion(outputs, one_hot_targets)
total_epoch_loss += loss.item()
loss.backward()
optimizer.step()
end_time = time.time()
train_time = end_time - start_time
model.eval()
with torch.no_grad():
total_epoch_acc = 0
start_time = time.time()
for index, (image, targets) in tqdm(
enumerate(test_loader), total=len(test_loader)
):
image = image.to(device)
targets = targets.to(device)
outputs = model(image)
pred = my_softmax(outputs, dim=1)
total_epoch_acc += (pred.argmax(1) == targets).sum().item()
end_time = time.time()
test_time = end_time - start_time
avg_epoch_acc = total_epoch_acc / len(test_mnist_dataset)
print(
f"Epoch [{epoch + 1}/{num_epochs}],",
f"Train Loss: {total_epoch_loss:.10f},",
f"Used Time: {train_time * 1000:.3f}ms,",
f"Test Acc: {avg_epoch_acc * 100:.3f}%,",
f"Used Time: {test_time * 1000:.3f}ms",
)