2023-10-10 13:45:54 +08:00

40 lines
1.1 KiB
Python

import torch
A = torch.tensor([[1, 2, 3]])
B = torch.tensor([[4],
[5]])
# 方法1: 使用PyTorch的减法操作符
result1 = A - B
# 方法2: 使用PyTorch的sub函数
result2 = torch.sub(A, B)
# 方法3: 手动实现广播机制并作差
def my_sub(a:torch.Tensor, b:torch.Tensor):
if not (
(a.size(0) == 1 and b.size(1) == 1)
or
(a.size(1) == 1 and b.size(0) == 1)
):
raise ValueError("输入的张量大小无法满足广播机制的条件。")
else:
target_shape = torch.Size([max(A.size(0), B.size(0)), max(A.size(1), B.size(1))])
A_broadcasted = A.expand(target_shape)
B_broadcasted = B.expand(target_shape)
result = torch.zeros(target_shape, dtype=torch.int64).to(device=A_broadcasted.device)
for i in range(target_shape[0]):
for j in range(target_shape[1]):
result[i, j] = A_broadcasted[i, j] - B_broadcasted[i, j]
return result
result3 = my_sub(A, B)
print("方法1的结果:")
print(result1)
print("方法2的结果:")
print(result2)
print("方法3的结果:")
print(result3)