132 lines
3.8 KiB
Python
132 lines
3.8 KiB
Python
import time
|
|
import numpy as np
|
|
import torch
|
|
from torch.nn.functional import *
|
|
from torch.utils.data import Dataset, DataLoader
|
|
from torch import nn
|
|
from torchvision import datasets, transforms
|
|
from tqdm import tqdm
|
|
from utils import *
|
|
|
|
import ipdb
|
|
|
|
|
|
class Model_1_1:
|
|
def __init__(self):
|
|
self.linear = My_Linear(in_features=500, out_features=1)
|
|
self.sigmoid = My_Sigmoid()
|
|
self.params = self.linear.params
|
|
|
|
def __call__(self, x):
|
|
return self.forward(x)
|
|
|
|
def forward(self, x):
|
|
x = self.linear(x)
|
|
x = self.sigmoid(x)
|
|
return x
|
|
|
|
def to(self, device: str):
|
|
for param in self.params:
|
|
param.data = param.data.to(device=device)
|
|
return self
|
|
|
|
def parameters(self):
|
|
return self.params
|
|
|
|
def train(self):
|
|
for param in self.params:
|
|
param.requires_grad = True
|
|
|
|
def eval(self):
|
|
for param in self.params:
|
|
param.requires_grad = False
|
|
|
|
class My_Regression_Dataset(Dataset):
|
|
def __init__(self, train=True):
|
|
data_size = 7000 if train else 3000
|
|
np.random.seed(0)
|
|
x = np.random.random((data_size, 500)) * 0.005
|
|
noise = np.random.randn(data_size) * 1e-7
|
|
y = 0.028 - 0.0056 * x.sum(axis=1) + noise
|
|
y = y.reshape(-1, 1)
|
|
self.data = [[x[i], y[i]] for i in range(x.shape[0])]
|
|
|
|
def __len__(self):
|
|
return len(self.data)
|
|
|
|
def __getitem__(self, index):
|
|
x, y = self.data[index]
|
|
x = torch.FloatTensor(x)
|
|
y = torch.FloatTensor(y)
|
|
return x, y
|
|
|
|
if __name__ == "__main__":
|
|
learning_rate = 5
|
|
num_epochs = 10
|
|
batch_size = 512
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
|
train_regression_dataset = My_Regression_Dataset(train=True)
|
|
test_regression_dataset = My_Regression_Dataset(train=False)
|
|
train_dataloader = DataLoader(
|
|
dataset=train_regression_dataset,
|
|
batch_size=batch_size,
|
|
shuffle=True,
|
|
num_workers=14,
|
|
pin_memory=True,
|
|
)
|
|
test_dataloader = DataLoader(
|
|
dataset=test_regression_dataset,
|
|
batch_size=batch_size,
|
|
shuffle=True,
|
|
num_workers=14,
|
|
pin_memory=True,
|
|
)
|
|
|
|
model = Model_1_1().to(device)
|
|
criterion = My_BCELoss()
|
|
optimizer = My_optimizer(model.parameters(), lr=learning_rate)
|
|
|
|
for epoch in range(num_epochs):
|
|
model.train()
|
|
total_epoch_loss = 0
|
|
start_time = time.time()
|
|
for index, (x, targets) in tqdm(enumerate(train_dataloader), total=len(train_dataloader)):
|
|
optimizer.zero_grad()
|
|
|
|
x = x.to(device)
|
|
targets = targets.to(device)
|
|
|
|
y_pred = model(x)
|
|
|
|
loss = criterion(y_pred, targets)
|
|
total_epoch_loss += loss.item()
|
|
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
end_time = time.time()
|
|
train_time = end_time - start_time
|
|
|
|
model.eval()
|
|
with torch.no_grad():
|
|
total_epoch_acc = 0
|
|
start_time = time.time()
|
|
for index, (x, targets) in tqdm(enumerate(test_dataloader), total=len(test_dataloader)):
|
|
x = x.to(device)
|
|
targets = targets.to(device)
|
|
|
|
y_pred = model(x)
|
|
total_epoch_acc += (1 - torch.abs(y_pred - targets) / torch.abs(targets)).sum().item()
|
|
|
|
end_time = time.time()
|
|
test_time = end_time - start_time
|
|
|
|
avg_epoch_acc = total_epoch_acc / len(test_regression_dataset)
|
|
print(
|
|
f"Epoch [{epoch + 1}/{num_epochs}],",
|
|
f"Train Loss: {total_epoch_loss},",
|
|
f"Used Time: {train_time * 1000:.3f}ms,",
|
|
f"Test Acc: {avg_epoch_acc * 100:.3f}%,",
|
|
f"Used Time: {test_time * 1000:.3f}ms",
|
|
) |