83 lines
2.2 KiB
Python
83 lines
2.2 KiB
Python
import time
|
|
import numpy as np
|
|
import torch
|
|
from torch.nn.functional import *
|
|
from torch.utils.data import Dataset, DataLoader
|
|
from torch import nn
|
|
from torchvision import datasets, transforms
|
|
from tqdm import tqdm
|
|
from utils import *
|
|
|
|
import ipdb
|
|
|
|
class Model_3_1(nn.Module):
|
|
def __init__(self, num_classes):
|
|
super().__init__()
|
|
self.flatten = nn.Flatten()
|
|
self.fc1 = nn.Linear(in_features=28 * 28, out_features=1024)
|
|
self.fc2 = nn.Linear(in_features=1024, out_features=256)
|
|
self.fc3 = nn.Linear(in_features=256, out_features=num_classes)
|
|
self.activate_fn = relu
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
x = self.flatten(x)
|
|
x = self.fc1(x)
|
|
x = self.activate_fn(x)
|
|
|
|
x = self.fc2(x)
|
|
x = self.activate_fn(x)
|
|
|
|
x = self.fc3(x)
|
|
x = self.activate_fn(x)
|
|
return x
|
|
|
|
|
|
class Model_3_2(nn.Module):
|
|
def __init__(self, num_classes):
|
|
super().__init__()
|
|
self.flatten = nn.Flatten()
|
|
self.fc1 = nn.Linear(in_features=28 * 28, out_features=1024)
|
|
self.fc2 = nn.Linear(in_features=1024, out_features=256)
|
|
self.fc3 = nn.Linear(in_features=256, out_features=num_classes)
|
|
self.activate_fn = sigmoid
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
x = self.flatten(x)
|
|
x = self.fc1(x)
|
|
x = self.activate_fn(x)
|
|
|
|
x = self.fc2(x)
|
|
x = self.activate_fn(x)
|
|
|
|
x = self.fc3(x)
|
|
x = self.activate_fn(x)
|
|
return x
|
|
|
|
|
|
class Model_3_3(nn.Module):
|
|
def __init__(self, num_classes):
|
|
super().__init__()
|
|
self.flatten = nn.Flatten()
|
|
self.fc1 = nn.Linear(in_features=28 * 28, out_features=1024)
|
|
self.fc2 = nn.Linear(in_features=1024, out_features=256)
|
|
self.fc3 = nn.Linear(in_features=256, out_features=num_classes)
|
|
self.activate_fn = tanh
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
x = self.flatten(x)
|
|
x = self.fc1(x)
|
|
x = self.activate_fn(x)
|
|
|
|
x = self.fc2(x)
|
|
x = self.activate_fn(x)
|
|
|
|
x = self.fc3(x)
|
|
x = self.activate_fn(x)
|
|
return x
|
|
|
|
|
|
if __name__ == "__main__":
|
|
train_MNIST_CLS(Model=Model_3_1)
|
|
train_MNIST_CLS(Model=Model_3_2)
|
|
train_MNIST_CLS(Model=Model_3_3)
|