2023-10-24 16:35:36 +08:00

83 lines
2.2 KiB
Python

import time
import numpy as np
import torch
from torch.nn.functional import *
from torch.utils.data import Dataset, DataLoader
from torch import nn
from torchvision import datasets, transforms
from tqdm import tqdm
from utils import *
import ipdb
class Model_3_1(nn.Module):
def __init__(self, num_classes):
super().__init__()
self.flatten = nn.Flatten()
self.fc1 = nn.Linear(in_features=28 * 28, out_features=1024)
self.fc2 = nn.Linear(in_features=1024, out_features=256)
self.fc3 = nn.Linear(in_features=256, out_features=num_classes)
self.activate_fn = relu
def forward(self, x: torch.Tensor):
x = self.flatten(x)
x = self.fc1(x)
x = self.activate_fn(x)
x = self.fc2(x)
x = self.activate_fn(x)
x = self.fc3(x)
x = self.activate_fn(x)
return x
class Model_3_2(nn.Module):
def __init__(self, num_classes):
super().__init__()
self.flatten = nn.Flatten()
self.fc1 = nn.Linear(in_features=28 * 28, out_features=1024)
self.fc2 = nn.Linear(in_features=1024, out_features=256)
self.fc3 = nn.Linear(in_features=256, out_features=num_classes)
self.activate_fn = sigmoid
def forward(self, x: torch.Tensor):
x = self.flatten(x)
x = self.fc1(x)
x = self.activate_fn(x)
x = self.fc2(x)
x = self.activate_fn(x)
x = self.fc3(x)
x = self.activate_fn(x)
return x
class Model_3_3(nn.Module):
def __init__(self, num_classes):
super().__init__()
self.flatten = nn.Flatten()
self.fc1 = nn.Linear(in_features=28 * 28, out_features=1024)
self.fc2 = nn.Linear(in_features=1024, out_features=256)
self.fc3 = nn.Linear(in_features=256, out_features=num_classes)
self.activate_fn = tanh
def forward(self, x: torch.Tensor):
x = self.flatten(x)
x = self.fc1(x)
x = self.activate_fn(x)
x = self.fc2(x)
x = self.activate_fn(x)
x = self.fc3(x)
x = self.activate_fn(x)
return x
if __name__ == "__main__":
train_MNIST_CLS(Model=Model_3_1)
train_MNIST_CLS(Model=Model_3_2)
train_MNIST_CLS(Model=Model_3_3)