107 lines
3.2 KiB
Python
107 lines
3.2 KiB
Python
import time
|
|
import numpy as np
|
|
import torch
|
|
from torch.nn.functional import *
|
|
from torch.utils.data import Dataset, DataLoader
|
|
from torch import nn
|
|
from torchvision import datasets, transforms
|
|
from tqdm import tqdm
|
|
from utils import *
|
|
|
|
import ipdb
|
|
|
|
|
|
class Model_2_3(nn.Module):
|
|
def __init__(self, num_classes):
|
|
super().__init__()
|
|
self.flatten = nn.Flatten()
|
|
self.linear = nn.Linear(in_features=28 * 28, out_features=num_classes)
|
|
|
|
def forward(self, x: torch.Tensor):
|
|
x = self.flatten(x)
|
|
x = self.linear(x)
|
|
return x
|
|
|
|
if __name__ == "__main__":
|
|
learning_rate = 5e-2
|
|
num_epochs = 10
|
|
batch_size = 512
|
|
num_classes = 10
|
|
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
|
transform = transforms.Compose(
|
|
[
|
|
transforms.ToTensor(),
|
|
transforms.Normalize((0.5,), (0.5,)),
|
|
]
|
|
)
|
|
train_mnist_dataset = datasets.MNIST(root="../dataset", train=True, transform=transform, download=True)
|
|
test_mnist_dataset = datasets.MNIST(root="../dataset", train=False, transform=transform, download=True)
|
|
train_loader = DataLoader(
|
|
dataset=train_mnist_dataset,
|
|
batch_size=batch_size,
|
|
shuffle=True,
|
|
num_workers=14,
|
|
pin_memory=True,
|
|
)
|
|
test_loader = DataLoader(
|
|
dataset=test_mnist_dataset,
|
|
batch_size=batch_size,
|
|
shuffle=True,
|
|
num_workers=14,
|
|
pin_memory=True,
|
|
)
|
|
|
|
model = Model_2_3(num_classes).to(device)
|
|
criterion = nn.CrossEntropyLoss()
|
|
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
|
|
|
|
for epoch in range(num_epochs):
|
|
model.train()
|
|
total_epoch_loss = 0
|
|
start_time = time.time()
|
|
for index, (images, targets) in tqdm(
|
|
enumerate(train_loader), total=len(train_loader)
|
|
):
|
|
optimizer.zero_grad()
|
|
|
|
images = images.to(device)
|
|
targets = targets.to(device)
|
|
one_hot_targets = one_hot(targets, num_classes=num_classes).to(dtype=torch.float)
|
|
|
|
outputs = model(images)
|
|
loss = criterion(outputs, one_hot_targets)
|
|
total_epoch_loss += loss.item()
|
|
|
|
loss.backward()
|
|
optimizer.step()
|
|
|
|
end_time = time.time()
|
|
train_time = end_time - start_time
|
|
|
|
model.eval()
|
|
with torch.no_grad():
|
|
total_epoch_acc = 0
|
|
start_time = time.time()
|
|
for index, (image, targets) in tqdm(
|
|
enumerate(test_loader), total=len(test_loader)
|
|
):
|
|
image = image.to(device)
|
|
targets = targets.to(device)
|
|
|
|
outputs = model(image)
|
|
pred = softmax(outputs, dim=1)
|
|
total_epoch_acc += (pred.argmax(1) == targets).sum().item()
|
|
|
|
end_time = time.time()
|
|
test_time = end_time - start_time
|
|
|
|
avg_epoch_acc = total_epoch_acc / len(test_mnist_dataset)
|
|
print(
|
|
f"Epoch [{epoch + 1}/{num_epochs}],",
|
|
f"Train Loss: {total_epoch_loss:.10f},",
|
|
f"Used Time: {train_time * 1000:.3f}ms,",
|
|
f"Test Acc: {avg_epoch_acc * 100:.3f}%,",
|
|
f"Used Time: {test_time * 1000:.3f}ms",
|
|
)
|