2023-10-24 20:15:43 +08:00

111 lines
3.3 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import time
import numpy as np
import torch
from torch.nn.functional import *
from torch.utils.data import Dataset, DataLoader
from torch import nn
from torchvision import datasets, transforms
from tqdm import tqdm
from utils import *
import ipdb
class Model_3_1(nn.Module):
def __init__(self, num_classes):
super().__init__()
self.flatten = nn.Flatten()
self.fc1 = nn.Linear(in_features=28 * 28, out_features=1024)
self.fc2 = nn.Linear(in_features=1024, out_features=256)
self.fc3 = nn.Linear(in_features=256, out_features=num_classes)
self.activate_fn = relu
def forward(self, x: torch.Tensor):
x = self.flatten(x)
x = self.fc1(x)
x = self.activate_fn(x)
x = self.fc2(x)
x = self.activate_fn(x)
x = self.fc3(x)
x = self.activate_fn(x)
return x
class Model_3_2(nn.Module):
def __init__(self, num_classes):
super().__init__()
self.flatten = nn.Flatten()
self.fc1 = nn.Linear(in_features=28 * 28, out_features=1024)
self.fc2 = nn.Linear(in_features=1024, out_features=256)
self.fc3 = nn.Linear(in_features=256, out_features=num_classes)
self.activate_fn = sigmoid
def forward(self, x: torch.Tensor):
x = self.flatten(x)
x = self.fc1(x)
x = self.activate_fn(x)
x = self.fc2(x)
x = self.activate_fn(x)
x = self.fc3(x)
x = self.activate_fn(x)
return x
class Model_3_3(nn.Module):
def __init__(self, num_classes):
super().__init__()
self.flatten = nn.Flatten()
self.fc1 = nn.Linear(in_features=28 * 28, out_features=1024)
self.fc2 = nn.Linear(in_features=1024, out_features=256)
self.fc3 = nn.Linear(in_features=256, out_features=num_classes)
self.activate_fn = tanh
def forward(self, x: torch.Tensor):
x = self.flatten(x)
x = self.fc1(x)
x = self.activate_fn(x)
x = self.fc2(x)
x = self.activate_fn(x)
x = self.fc3(x)
x = self.activate_fn(x)
return x
class Model_3_4(nn.Module):
def __init__(self, num_classes):
super().__init__()
self.flatten = nn.Flatten()
self.fc1 = nn.Linear(in_features=28 * 28, out_features=1024)
self.fc2 = nn.Linear(in_features=1024, out_features=256)
self.fc3 = nn.Linear(in_features=256, out_features=num_classes)
self.activate_fn = leaky_relu
def forward(self, x: torch.Tensor):
x = self.flatten(x)
x = self.fc1(x)
x = self.activate_fn(x)
x = self.fc2(x)
x = self.activate_fn(x)
x = self.fc3(x)
x = self.activate_fn(x)
return x
if __name__ == "__main__":
print("模型1开始训练激活函数为relu")
train_loss_3_1, test_acc_3_1 = train_MNIST_CLS(Model=Model_3_1) # 激活函数为relu
print("模型2开始训练激活函数为sigmoid")
train_loss_3_2, test_acc_3_2 = train_MNIST_CLS(Model=Model_3_2) # 激活函数为sigmoid
print("模型3开始训练激活函数为tanh")
train_loss_3_3, test_acc_3_3 = train_MNIST_CLS(Model=Model_3_3) # 激活函数为tanh
print("模型4开始训练激活函数为leaky_relu")
train_loss_3_4, test_acc_3_4 = train_MNIST_CLS(Model=Model_3_4) # 激活函数为leaky_relu