2024-01-12 02:27:03 +08:00

168 lines
6.7 KiB
Python

from utils import *
class Model_Vehicle_CLS_2_1(nn.Module):
def __init__(self, num_classes=3):
super(Model_Vehicle_CLS_2_1, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, padding=1, dilation=1, bias=False),
nn.BatchNorm2d(16),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, padding=1, dilation=1, bias=False),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, padding=1, dilation=1, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
)
self.conv2 = nn.Sequential(
nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, padding=1, dilation=1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, padding=1, dilation=1, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, padding=1, dilation=1, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
)
self.fc = nn.Linear(in_features=512, out_features=num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = F.avg_pool2d(x, 32)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
class Model_Vehicle_CLS_2_2(nn.Module):
def __init__(self, num_classes=3):
super(Model_Vehicle_CLS_2_2, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, padding=1, dilation=1, bias=False),
nn.BatchNorm2d(16),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, padding=2, dilation=2, bias=False),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, padding=5, dilation=5, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
)
self.conv2 = nn.Sequential(
nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, padding=1, dilation=1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, padding=2, dilation=2, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, padding=5, dilation=5, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
)
self.fc = nn.Linear(in_features=512, out_features=num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = F.avg_pool2d(x, 32)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
class Model_Vehicle_CLS_2_3(nn.Module):
def __init__(self, num_classes=3):
super(Model_Vehicle_CLS_2_3, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, padding=1, dilation=1, bias=False),
nn.BatchNorm2d(16),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, padding=3, dilation=3, bias=False),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, padding=5, dilation=5, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
)
self.conv2 = nn.Sequential(
nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, padding=1, dilation=1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, padding=3, dilation=3, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, padding=5, dilation=5, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
)
self.fc = nn.Linear(in_features=512, out_features=num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = F.avg_pool2d(x, 32)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
class Model_Vehicle_CLS_2_4(nn.Module):
def __init__(self, num_classes=3):
super(Model_Vehicle_CLS_2_4, self).__init__()
self.conv1 = nn.Sequential(
nn.Conv2d(in_channels=3, out_channels=16, kernel_size=3, padding=1, dilation=1, bias=False),
nn.BatchNorm2d(16),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, padding=3, dilation=3, bias=False),
nn.BatchNorm2d(32),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, padding=7, dilation=7, bias=False),
nn.BatchNorm2d(64),
nn.ReLU(inplace=True),
)
self.conv2 = nn.Sequential(
nn.Conv2d(in_channels=64, out_channels=128, kernel_size=3, padding=1, dilation=1, bias=False),
nn.BatchNorm2d(128),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=128, out_channels=256, kernel_size=3, padding=3, dilation=3, bias=False),
nn.BatchNorm2d(256),
nn.ReLU(inplace=True),
nn.Conv2d(in_channels=256, out_channels=512, kernel_size=3, padding=7, dilation=7, bias=False),
nn.BatchNorm2d(512),
nn.ReLU(inplace=True),
)
self.fc = nn.Linear(in_features=512, out_features=num_classes)
def forward(self, x):
x = self.conv1(x)
x = self.conv2(x)
x = F.avg_pool2d(x, 32)
x = x.view(x.size(0), -1)
x = self.fc(x)
return x
if __name__ == "__main__":
num_epochs = 61
learning_rate = 1e-4
batch_size = 256
dilations = ["[[1, 1, 1], [1, 1, 1]]",
"[[1, 2, 5], [1, 2, 5]]",
"[[1, 3, 5], [1, 3, 5]]",
"[[1, 3, 7], [1, 3, 7]]"]
models = [
Model_Vehicle_CLS_2_1,
Model_Vehicle_CLS_2_2,
Model_Vehicle_CLS_2_3,
Model_Vehicle_CLS_2_4,
]
for i in range(4):
model = models[i]()
print("Dilation: " + dilations[i])
train_loss, test_acc = train_Vehicle_CLS(model=model, learning_rate=learning_rate,
batch_size=batch_size, num_epochs=num_epochs)
print()