2023-10-24 20:15:43 +08:00

114 lines
3.4 KiB
Python

import time
import numpy as np
import torch
from torch.nn.functional import *
from torch.utils.data import Dataset, DataLoader
from torch import nn
from torchvision import datasets, transforms
from tqdm import tqdm
from utils import *
import ipdb
class Model_2_1(nn.Module):
def __init__(self):
super().__init__()
self.linear = nn.Linear(in_features=500, out_features=1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.linear(x)
x = self.sigmoid(x)
return x
class My_Regression_Dataset(Dataset):
def __init__(self, train=True):
data_size = 7000 if train else 3000
np.random.seed(0)
x = np.random.random((data_size, 500)) * 0.005
noise = np.random.randn(data_size) * 1e-7
y = 0.028 - 0.0056 * x.sum(axis=1) + noise
y = y.reshape(-1, 1)
self.data = [[x[i], y[i]] for i in range(x.shape[0])]
def __len__(self):
return len(self.data)
def __getitem__(self, index):
x, y = self.data[index]
x = torch.FloatTensor(x)
y = torch.FloatTensor(y)
return x, y
if __name__ == "__main__":
learning_rate = 5
num_epochs = 10
batch_size = 512
device = "cuda:0" if torch.cuda.is_available() else "cpu"
train_regression_dataset = My_Regression_Dataset(train=True)
test_regression_dataset = My_Regression_Dataset(train=False)
train_dataloader = DataLoader(
dataset=train_regression_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
test_dataloader = DataLoader(
dataset=test_regression_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
model = Model_2_1().to(device)
criterion = nn.BCELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
model.train()
total_epoch_loss = 0
start_time = time.time()
for index, (x, targets) in tqdm(enumerate(train_dataloader), total=len(train_dataloader)):
optimizer.zero_grad()
x = x.to(device)
targets = targets.to(device)
y_pred = model(x)
loss = criterion(y_pred, targets)
total_epoch_loss += loss.item()
loss.backward()
optimizer.step()
end_time = time.time()
train_time = end_time - start_time
model.eval()
with torch.no_grad():
total_epoch_acc = 0
start_time = time.time()
for index, (x, targets) in tqdm(enumerate(test_dataloader), total=len(test_dataloader)):
x = x.to(device)
targets = targets.to(device)
y_pred = model(x)
total_epoch_acc += (1 - torch.abs(y_pred - targets) / torch.abs(targets)).sum().item()
end_time = time.time()
test_time = end_time - start_time
avg_epoch_acc = total_epoch_acc / len(test_regression_dataset)
print(
f"Epoch [{epoch + 1}/{num_epochs}],",
f"Train Loss: {total_epoch_loss:.10f},",
f"Used Time: {train_time * 1000:.3f}ms,",
f"Test Acc: {avg_epoch_acc * 100:.3f}%,",
f"Used Time: {test_time * 1000:.3f}ms",
)