2024-09-05 12:56:46 +08:00

58 lines
2.3 KiB
Python

from PIL import Image
from torch.utils.data import Dataset
import os
import clip
class Classes:
def __init__(self, classes_file):
self.class2index = {}
self.index2class = {}
classes = open(classes_file).readlines()
classes = [line.strip() for line in classes]
for row in classes:
index, birdname = row.split(' ')
index = int(index)
birdname = (birdname.split('.'))[1].replace('_', ' ')
self.class2index['A photo of ' + birdname] = index - 1
self.index2class[index - 1] = 'A photo of ' + birdname
def __len__(self):
return len(self.class2index)
def get_class(self, num: int):
return self.index2class[num] if (num in self.index2class) else None
def get_id(self, class_name: str):
return (
self.class2index[class_name] if (class_name in self.class2index) else None
)
class MyDataset(Dataset):
def __init__(self, processor, train=True):
classes = Classes('/home/kejingfan/cub/classes.txt')
class_list = [classes.get_class(i) for i in range(len(classes))]
self.tokens = clip.tokenize(class_list)
self.img_process = processor
self.root_dir = '/home/kejingfan/cub/images'
images_list = open('/home/kejingfan/cub/images.txt').readlines()
images_list = [line.strip().split(' ')[1] for line in images_list]
self.images = []
labels_file = open('/home/kejingfan/cub/image_class_labels.txt').readlines()
labels = [int(line.strip().split(' ')[1]) for line in labels_file]
train_test_split_file = open('/home/kejingfan/cub/train_test_split.txt').readlines()
is_train = [line.strip().split(' ')[1] == '1' for line in train_test_split_file]
for index in range(len(images_list)):
class_id = labels[index]
if (train and is_train[index]) or (not train and not is_train[index]):
self.images.append([os.path.join(self.root_dir, images_list[index]), int(class_id) - 1])
def __len__(self):
return len(self.images)
def __getitem__(self, index):
image, target = self.images[index]
token = self.tokens[target]
image = Image.open(image).convert("RGB")
image = self.img_process(image)
return image, token, target