2024-09-05 12:56:46 +08:00

74 lines
2.7 KiB
Python

import torch
from torch import nn, optim
from torch.utils.data import DataLoader
from tqdm import tqdm
import clip
from get_loader import MyDataset
from test import test
def convert_models_to_fp32(model):
for p in model.parameters():
p.data = p.data.float()
p.grad.data = p.grad.data.float()
def train():
batch_size = 64
learning_rate = 1e-6
num_epochs = 500
device = torch.device("cuda:2" if torch.cuda.is_available() else "cpu")
net, preprocess = clip.load("ViT-L/14", device=device, jit=False)
if device == 'cpu':
net.float()
else:
clip.model.convert_weights(net)
loss_img = nn.CrossEntropyLoss()
loss_txt = nn.CrossEntropyLoss()
optimizer = optim.Adam(net.parameters(), lr=learning_rate, betas=(0.9, 0.98), eps=1e-6, weight_decay=0.2)
train_dateset = MyDataset(processor=preprocess, train=True)
train_loader = DataLoader(train_dateset, batch_size=batch_size, shuffle=True, num_workers=64, pin_memory=True)
test_dataset = MyDataset(processor=preprocess, train=False)
test_loader = DataLoader(test_dataset, batch_size=batch_size, num_workers=64, shuffle=True, pin_memory=True)
print(f'Train dataset size: {len(train_dateset)}\nTest dataset size: {len(test_dataset)}\n')
for epoch in range(num_epochs):
total_epoch_loss = 0
for index, (images, tokens, targets) in tqdm(enumerate(train_loader), total=len(train_loader)):
optimizer.zero_grad()
images = images.to(device)
tokens = tokens.to(device)
with torch.set_grad_enabled(True):
logits_per_image, logits_per_text = net(images, tokens)
ground_truth = torch.arange(len(images), dtype=torch.long, device=device)
cur_loss = (loss_img(logits_per_image, ground_truth) + loss_txt(logits_per_text, ground_truth)) / 2
total_epoch_loss += cur_loss.item()
cur_loss.backward()
if device == 'cpu':
optimizer.step()
else:
convert_models_to_fp32(net)
optimizer.step()
clip.model.convert_weights(net)
test_acc = test(net, test_dataset, test_loader, device)
print(f'Total train loss: {total_epoch_loss:.6f}, Test accuracy: {test_acc:.6%}')
print("--------------------------------------------------------------")
torch.save({'epoch': epoch,
'model_state_dict': net.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': total_epoch_loss,
}, f"model_checkpoint/model-{epoch + 1}_acc-{test_acc*100:.3f}.pt")
if __name__ == "__main__":
train()