2023-10-24 16:35:36 +08:00

119 lines
3.6 KiB
Python

import time
import numpy as np
import torch
from torch.nn.functional import *
from torch.utils.data import Dataset, DataLoader
from torch import nn
from torchvision import datasets, transforms
from tqdm import tqdm
from utils import *
import ipdb
class Model_2_1(nn.Module):
def __init__(self):
super().__init__()
self.fc = nn.Linear(in_features=200, out_features=1)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
x = self.fc(x)
x = self.sigmoid(x)
return x
class My_BinaryCLS_Dataset(Dataset):
def __init__(self, train=True, num_features=200):
num_samples = 7000 if train else 3000
x_1 = np.random.normal(loc=-0.5, scale=0.2, size=(num_samples, num_features))
x_2 = np.random.normal(loc=0.5, scale=0.2, size=(num_samples, num_features))
labels_1 = np.zeros((num_samples, 1))
labels_2 = np.ones((num_samples, 1))
x = np.concatenate((x_1, x_2), axis=0)
labels = np.concatenate((labels_1, labels_2), axis=0)
self.data = [[x[i], labels[i]] for i in range(2 * num_samples)]
def __len__(self):
return len(self.data)
def __getitem__(self, index):
x, y = self.data[index]
x = torch.FloatTensor(x)
y = torch.LongTensor(y)
return x, y
if __name__ == "__main__":
learning_rate = 1e-4
num_epochs = 10
batch_size = 512
device = "cuda:0" if torch.cuda.is_available() else "cpu"
train_binarycls_dataset = My_BinaryCLS_Dataset(train=True)
test_binarycls_dataset = My_BinaryCLS_Dataset(train=False)
train_dataloader = DataLoader(
dataset=train_binarycls_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
test_dataloader = DataLoader(
dataset=test_binarycls_dataset,
batch_size=batch_size,
shuffle=True,
num_workers=14,
pin_memory=True,
)
model = Model_2_1().to(device)
criterion = nn.BCELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
for epoch in range(num_epochs):
model.train()
total_epoch_loss = 0
start_time = time.time()
for index, (x, targets) in tqdm(enumerate(train_dataloader), total=len(train_dataloader)):
optimizer.zero_grad()
x = x.to(device)
targets = targets.to(device).to(dtype=torch.float32)
y_pred = model(x)
loss = criterion(y_pred, targets)
total_epoch_loss += loss.item()
loss.backward()
optimizer.step()
end_time = time.time()
train_time = end_time - start_time
model.eval()
with torch.no_grad():
total_epoch_acc = 0
start_time = time.time()
for index, (x, targets) in tqdm(enumerate(test_dataloader), total=len(test_dataloader)):
x = x.to(device)
targets = targets.to(device)
output = model(x)
pred = (output > 0.5).to(dtype=torch.long)
total_epoch_acc += (pred == targets).sum().item()
end_time = time.time()
test_time = end_time - start_time
avg_epoch_acc = total_epoch_acc / len(test_binarycls_dataset)
print(
f"Epoch [{epoch + 1}/{num_epochs}],",
f"Train Loss: {total_epoch_loss},",
f"Used Time: {train_time * 1000:.3f}ms,",
f"Test Acc: {avg_epoch_acc * 100:.3f}%,",
f"Used Time: {test_time * 1000:.3f}ms",
)