2023-11-20 23:11:01 +08:00

15 lines
474 B
Python

import numpy as np
import torch
from utils import *
if __name__ == "__main__":
learning_rate = 8e-2
num_epochs = 101
for i in np.arange(3):
dropout_rate = 0.1 + 0.4 * i
model = MNIST_CLS_Model(num_classes=10, dropout_rate=dropout_rate)
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
print(f"dropout_rate={dropout_rate}")
train_loss, test_acc = train_MNIST_CLS(model, optimizer, num_epochs=num_epochs)