完成实验三
This commit is contained in:
parent
d358281472
commit
7fbb893223
@ -1,14 +1,7 @@
|
||||
import time
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.nn.functional import *
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
from torch import nn
|
||||
from torchvision import datasets, transforms
|
||||
from tqdm import tqdm
|
||||
from utils import *
|
||||
|
||||
import ipdb
|
||||
|
||||
class My_Dropout(nn.Module):
|
||||
def __init__(self, p, **kwargs):
|
||||
@ -16,7 +9,7 @@ class My_Dropout(nn.Module):
|
||||
self.p = p
|
||||
self.mask = None
|
||||
|
||||
def forward(self, x:torch.Tensor):
|
||||
def forward(self, x: torch.Tensor):
|
||||
if self.training:
|
||||
self.mask = (torch.rand(x.shape) > self.p).to(dtype=torch.float32, device=x.device)
|
||||
return x * self.mask / (1 - self.p)
|
||||
@ -27,7 +20,7 @@ class My_Dropout(nn.Module):
|
||||
if __name__ == "__main__":
|
||||
my_dropout = My_Dropout(p=0.5)
|
||||
nn_dropout = nn.Dropout(p=0.5)
|
||||
x = torch.tensor([[1.0, 2.0, 3.0, 4.0, 5.0],
|
||||
x = torch.tensor([[1.0, 2.0, 3.0, 4.0, 5.0],
|
||||
[6.0, 7.0, 8.0, 9.0, 10.0]])
|
||||
print(f"输入:\n{x}")
|
||||
output_my_dropout = my_dropout(x)
|
||||
|
@ -1,37 +1,14 @@
|
||||
import time
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.nn.functional import *
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
from torch import nn
|
||||
from torchvision import datasets, transforms
|
||||
from tqdm import tqdm
|
||||
from utils import *
|
||||
|
||||
import ipdb
|
||||
|
||||
|
||||
class MNIST_CLS_Model(nn.Module):
|
||||
def __init__(self, num_classes, dropout_rate=0.5):
|
||||
super().__init__()
|
||||
self.flatten = nn.Flatten()
|
||||
self.fc1 = nn.Linear(in_features=28 * 28, out_features=1024)
|
||||
self.fc2 = nn.Linear(in_features=1024, out_features=num_classes)
|
||||
self.dropout = nn.Dropout(p=dropout_rate)
|
||||
|
||||
def forward(self, x: torch.Tensor):
|
||||
x = self.flatten(x)
|
||||
x = torch.relu(self.fc1(x))
|
||||
x = self.dropout(x)
|
||||
x = self.fc2(x)
|
||||
return x
|
||||
|
||||
if __name__ == "__main__":
|
||||
learning_rate = 8e-2
|
||||
num_epochs = 10
|
||||
num_epochs = 101
|
||||
for i in np.arange(3):
|
||||
dropout_rate = 0.1 + 0.4 * i
|
||||
model = MNIST_CLS_Model(num_classes=10, dropout_rate=dropout_rate)
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate)
|
||||
print(f"dropout_rate={dropout_rate}")
|
||||
train_loss, test_acc = train_MNIST_CLS(model, optimizer, num_epochs=num_epochs)
|
||||
train_loss, test_acc = train_MNIST_CLS(model, optimizer, num_epochs=num_epochs)
|
||||
|
49
Lab3/code/2.1.py
Normal file
49
Lab3/code/2.1.py
Normal file
@ -0,0 +1,49 @@
|
||||
import torch
|
||||
from utils import *
|
||||
|
||||
|
||||
class My_SGD:
|
||||
def __init__(self, params: list[torch.Tensor], lr: float, weight_decay=0.0):
|
||||
self.params = params
|
||||
self.lr = lr
|
||||
self.weight_decay = weight_decay
|
||||
|
||||
def step(self):
|
||||
with torch.no_grad():
|
||||
for param in self.params:
|
||||
if param.grad is not None:
|
||||
if len(param.data.shape) > 1:
|
||||
param.data = param.data - self.lr * (param.grad + self.weight_decay * param.data)
|
||||
else:
|
||||
param.data = param.data - self.lr * param.grad
|
||||
|
||||
def zero_grad(self):
|
||||
for param in self.params:
|
||||
if param.grad is not None:
|
||||
param.grad.data = torch.zeros_like(param.grad.data)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
params1 = torch.tensor([[1.0, 2.0]], requires_grad=True)
|
||||
params2 = torch.tensor([[1.0, 2.0]], requires_grad=True)
|
||||
|
||||
my_sgd = My_SGD(params=[params1], lr=0.5, weight_decay=0.1)
|
||||
optim_sgd = torch.optim.SGD(params=[params2], lr=0.5, weight_decay=0.1)
|
||||
my_sgd.zero_grad()
|
||||
optim_sgd.zero_grad()
|
||||
|
||||
loss1 = 2 * params1.sum()
|
||||
loss2 = 2 * params2.sum()
|
||||
# 偏导为2
|
||||
loss1.backward()
|
||||
loss2.backward()
|
||||
print("params1的梯度为:\n", params1.grad.data)
|
||||
print("params2的梯度为:\n", params2.grad.data)
|
||||
|
||||
my_sgd.step()
|
||||
optim_sgd.step()
|
||||
# 结果为:w - lr * grad - lr * weight_decay_rate * w
|
||||
# w[0] = 1 - 0.5 * 2 - 0.5 * 0.1 * 1 = -0.0500
|
||||
# w[1] = 2 - 0.5 * 2 - 0.5 * 0.1 * 2 = 0.9000
|
||||
print("经过L_2正则化后的My_SGD反向传播结果:\n", params1.data)
|
||||
print("经过L_2正则化后的torch.optim.SGD反向传播结果:\n", params2.data)
|
15
Lab3/code/2.2.py
Normal file
15
Lab3/code/2.2.py
Normal file
@ -0,0 +1,15 @@
|
||||
import numpy as np
|
||||
import torch
|
||||
from utils import *
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
learning_rate = 8e-2
|
||||
num_epochs = 101
|
||||
color = ["blue", "green", "orange", "purple"]
|
||||
for i in np.arange(4):
|
||||
weight_decay_rate = i / 4 * 0.01
|
||||
model = MNIST_CLS_Model(num_classes=10, dropout_rate=0)
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, weight_decay=weight_decay_rate)
|
||||
print(f"weight_decay_rate={weight_decay_rate}")
|
||||
train_loss, test_acc = train_MNIST_CLS(model, optimizer, num_epochs=num_epochs)
|
64
Lab3/code/3.1.py
Normal file
64
Lab3/code/3.1.py
Normal file
@ -0,0 +1,64 @@
|
||||
import torch
|
||||
from utils import *
|
||||
|
||||
|
||||
# 手动实现torch.optim.SGD
|
||||
class My_SGD:
|
||||
def __init__(self, params: list[torch.Tensor], lr: float, weight_decay=0.0, momentum=0.0):
|
||||
self.params = params
|
||||
self.lr = lr
|
||||
self.weight_decay = weight_decay
|
||||
self.momentum = momentum
|
||||
self.velocities = [torch.zeros_like(param.data) for param in params]
|
||||
|
||||
def step(self):
|
||||
with torch.no_grad():
|
||||
for index, param in enumerate(self.params):
|
||||
if param.grad is not None:
|
||||
if self.weight_decay > 0:
|
||||
if len(param.data.shape) > 1:
|
||||
param.grad.data = (param.grad.data + self.weight_decay * param.data)
|
||||
self.velocities[index] = (self.momentum * self.velocities[index] - self.lr * param.grad)
|
||||
param.data = param.data + self.velocities[index]
|
||||
|
||||
def zero_grad(self):
|
||||
for param in self.params:
|
||||
if param.grad is not None:
|
||||
param.grad.data = torch.zeros_like(param.grad.data)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
params1 = torch.tensor([[1.0, 2.0]], requires_grad=True)
|
||||
params2 = torch.tensor([[1.0, 2.0]], requires_grad=True)
|
||||
|
||||
my_sgd = My_SGD(params=[params1], lr=0.5, momentum=1)
|
||||
optim_sgd = torch.optim.SGD(params=[params2], lr=0.5, momentum=1)
|
||||
my_sgd.zero_grad()
|
||||
optim_sgd.zero_grad()
|
||||
|
||||
loss1 = 2 * params1.sum()
|
||||
loss2 = 2 * params2.sum()
|
||||
# 偏导为2
|
||||
loss1.backward()
|
||||
loss2.backward()
|
||||
my_sgd.step()
|
||||
optim_sgd.step()
|
||||
# 结果为:w - lr * grad + momentum * velocity
|
||||
# w[0] = 1 - 0.5 * 2 + 1 * 0 = 0
|
||||
# w[1] = 2 - 0.5 * 2 + 1 * 0 = 1
|
||||
print("My_SGD第1次反向传播结果:\n", params1.data)
|
||||
print("torch.optim.SGD第1次反向传播结果:\n", params2.data)
|
||||
|
||||
my_sgd.zero_grad()
|
||||
optim_sgd.zero_grad()
|
||||
loss1 = -3 * params1.sum()
|
||||
loss2 = -3 * params2.sum()
|
||||
loss1.backward()
|
||||
loss2.backward()
|
||||
my_sgd.step()
|
||||
optim_sgd.step()
|
||||
# 结果为:w - lr * grad + momentum * velocity
|
||||
# w[0] = 0 - 0.5 * -3 + 1 * (-0.5 * 2) = 0.5
|
||||
# w[1] = 1 - 0.5 * -3 + 1 * (-0.5 * 2) = 1.5
|
||||
print("My_SGD第2次反向传播结果:\n", params1.data)
|
||||
print("torch.optim.SGD第2次反向传播结果:\n", params2.data)
|
63
Lab3/code/3.2.py
Normal file
63
Lab3/code/3.2.py
Normal file
@ -0,0 +1,63 @@
|
||||
import torch
|
||||
from utils import *
|
||||
|
||||
|
||||
class My_RMSprop:
|
||||
def __init__(self, params: list[torch.Tensor], lr=1e-2, alpha=0.99, eps=1e-8):
|
||||
self.params = params
|
||||
self.lr = lr
|
||||
self.alpha = alpha
|
||||
self.eps = eps
|
||||
self.square_avg = [torch.zeros_like(param.data) for param in params]
|
||||
|
||||
|
||||
def step(self):
|
||||
with torch.no_grad():
|
||||
for index, param in enumerate(self.params):
|
||||
if param.grad is not None:
|
||||
self.square_avg[index] = self.alpha * self.square_avg[index] + (1 - self.alpha) * param.grad ** 2
|
||||
param.data = param.data - self.lr * param.grad / torch.sqrt(self.square_avg[index] + self.eps)
|
||||
|
||||
def zero_grad(self):
|
||||
for param in self.params:
|
||||
if param.grad is not None:
|
||||
param.grad.data = torch.zeros_like(param.grad.data)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
params1 = torch.tensor([[1.0, 2.0]], requires_grad=True)
|
||||
params2 = torch.tensor([[1.0, 2.0]], requires_grad=True)
|
||||
|
||||
my_sgd = My_RMSprop(params=[params1], lr=1, alpha=0.5, eps=1e-8)
|
||||
optim_sgd = torch.optim.RMSprop(params=[params2], lr=1, alpha=0.5, eps=1e-8)
|
||||
my_sgd.zero_grad()
|
||||
optim_sgd.zero_grad()
|
||||
|
||||
loss1 = 2 * params1.sum()
|
||||
loss2 = 2 * params2.sum()
|
||||
# 偏导为2
|
||||
loss1.backward()
|
||||
loss2.backward()
|
||||
my_sgd.step()
|
||||
optim_sgd.step()
|
||||
# s = alpha * s + (1-alpha) * grad^2 = 0.5 * 0 + (1-0.5) * 2^2 = 2
|
||||
# w = w - lr * grad * (s + eps)^0.5
|
||||
# w[0] = 1 - 1 * 2 / (2 + 1e-8)^0.5 ~= -0.41
|
||||
# w[1] = 2 - 1 * 2 / (2 + 1e-8)^0.5 ~= -0.59
|
||||
print("My_RMSprop第1次反向传播结果:\n", params1.data)
|
||||
print("torch.optim.RMSprop第1次反向传播结果:\n", params2.data)
|
||||
|
||||
my_sgd.zero_grad()
|
||||
optim_sgd.zero_grad()
|
||||
loss1 = -3 * params1.sum()
|
||||
loss2 = -3 * params2.sum()
|
||||
loss1.backward()
|
||||
loss2.backward()
|
||||
my_sgd.step()
|
||||
optim_sgd.step()
|
||||
# s = alpha * s + (1-alpha) * grad^2 = 0.5 * 2 + (1-0.5) * (-3)^2 = 5.5
|
||||
# w - lr * grad * (s + eps)^0.5
|
||||
# w[0] = -0.41 - 1 * -3 / (5.5 + 1e-8)^0.5 ~= 0.87
|
||||
# w[1] = 0.59 - 1 * -3 / (5.5 + 1e-8)^0.5 ~= 1.86
|
||||
print("My_RMSprop第2次反向传播结果:\n", params1.data)
|
||||
print("torch.optim.RMSprop第2次反向传播结果:\n", params2.data)
|
64
Lab3/code/3.3.py
Normal file
64
Lab3/code/3.3.py
Normal file
@ -0,0 +1,64 @@
|
||||
import torch
|
||||
from utils import *
|
||||
|
||||
|
||||
class My_Adam:
|
||||
def __init__(self, params: list[torch.Tensor], lr=1e-3, betas=(0.9, 0.999), eps=1e-8):
|
||||
self.params = params
|
||||
self.lr = lr
|
||||
self.beta1 = betas[0]
|
||||
self.beta2 = betas[1]
|
||||
self.eps = eps
|
||||
self.t = 0
|
||||
self.momentums = [torch.zeros_like(param.data) for param in params]
|
||||
self.velocities = [torch.zeros_like(param.data) for param in params]
|
||||
|
||||
def step(self):
|
||||
self.t += 1
|
||||
with torch.no_grad():
|
||||
for index, param in enumerate(self.params):
|
||||
if param.grad is not None:
|
||||
self.momentums[index] = (self.beta1 * self.momentums[index] + (1 - self.beta1) * param.grad)
|
||||
self.velocities[index] = (self.beta2 * self.velocities[index] + (1 - self.beta2) * param.grad ** 2)
|
||||
|
||||
momentums_hat = self.momentums[index] / (1 - self.beta1 ** self.t)
|
||||
velocities_hat = self.velocities[index] / (1 - self.beta2 ** self.t)
|
||||
|
||||
param.data = param.data - self.lr * momentums_hat / (torch.sqrt(velocities_hat) + self.eps)
|
||||
|
||||
def zero_grad(self):
|
||||
for param in self.params:
|
||||
if param.grad is not None:
|
||||
param.grad.data = torch.zeros_like(param.grad.data)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
params1 = torch.tensor([[1.0, 2.0]], requires_grad=True)
|
||||
params2 = torch.tensor([[1.0, 2.0]], requires_grad=True)
|
||||
|
||||
my_sgd = My_Adam(params=[params1], lr=1, betas=(0.5, 0.5), eps=1e-8)
|
||||
optim_sgd = torch.optim.Adam(params=[params2], lr=1, betas=(0.5, 0.5), eps=1e-8)
|
||||
my_sgd.zero_grad()
|
||||
optim_sgd.zero_grad()
|
||||
|
||||
loss1 = 2 * params1.sum()
|
||||
loss2 = 2 * params2.sum()
|
||||
# 偏导为2
|
||||
loss1.backward()
|
||||
loss2.backward()
|
||||
my_sgd.step()
|
||||
optim_sgd.step()
|
||||
print("My_Adam第1次反向传播结果:\n", params1.data)
|
||||
print("torch.optim.Adam第1次反向传播结果:\n", params2.data)
|
||||
|
||||
my_sgd.zero_grad()
|
||||
optim_sgd.zero_grad()
|
||||
loss1 = -3 * params1.sum()
|
||||
loss2 = -3 * params2.sum()
|
||||
# 偏导为-3
|
||||
loss1.backward()
|
||||
loss2.backward()
|
||||
my_sgd.step()
|
||||
optim_sgd.step()
|
||||
print("My_Adam第2次反向传播结果:\n", params1.data)
|
||||
print("torch.optim.Adam第2次反向传播结果:\n", params2.data)
|
23
Lab3/code/3.4.py
Normal file
23
Lab3/code/3.4.py
Normal file
@ -0,0 +1,23 @@
|
||||
import torch
|
||||
from utils import *
|
||||
|
||||
if __name__ == "__main__":
|
||||
learning_rate = 5e-2
|
||||
num_epochs = 161
|
||||
color = ["blue", "green", "orange"]
|
||||
optim_names = ["SGD", "RMSprop", "Adam"]
|
||||
|
||||
model = MNIST_CLS_Model(num_classes=10, dropout_rate=0)
|
||||
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, momentum=0.9)
|
||||
print(f"optimizer: SGD")
|
||||
train_loss, test_acc = train_MNIST_CLS(model, optimizer, num_epochs=num_epochs)
|
||||
|
||||
model = MNIST_CLS_Model(num_classes=10, dropout_rate=0)
|
||||
optimizer = torch.optim.RMSprop(model.parameters(), lr=learning_rate, alpha=0.99, eps=1e-8)
|
||||
print(f"optimizer: RMSprop")
|
||||
train_loss, test_acc = train_MNIST_CLS(model, optimizer, num_epochs=num_epochs)
|
||||
|
||||
model = MNIST_CLS_Model(num_classes=10, dropout_rate=0)
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, betas=(0.9, 0.999), eps=1e-8)
|
||||
print(f"optimizer: Adam")
|
||||
train_loss, test_acc = train_MNIST_CLS(model, optimizer, num_epochs=num_epochs)
|
101
Lab3/code/4.py
Normal file
101
Lab3/code/4.py
Normal file
@ -0,0 +1,101 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
from utils import *
|
||||
from torch.utils.data import random_split
|
||||
|
||||
|
||||
learning_rate = 1e-3
|
||||
num_epochs = 161
|
||||
batch_size = 8192
|
||||
num_classes = 10
|
||||
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
transform = transforms.Compose(
|
||||
[
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.5,), (0.5,)),
|
||||
]
|
||||
)
|
||||
train_mnist_dataset = datasets.MNIST(root="../dataset", train=True, transform=transform, download=True)
|
||||
test_mnist_dataset = datasets.MNIST(root="../dataset", train=False, transform=transform, download=True)
|
||||
|
||||
train_dataset_length = int(0.8 * len(train_mnist_dataset))
|
||||
val_dataset_length = len(train_mnist_dataset) - train_dataset_length
|
||||
train_mnist_dataset, val_mnist_dataset = random_split(
|
||||
train_mnist_dataset,
|
||||
[train_dataset_length, val_dataset_length],
|
||||
generator=torch.Generator().manual_seed(42),
|
||||
)
|
||||
|
||||
train_loader = DataLoader(dataset=train_mnist_dataset, batch_size=batch_size, shuffle=True, num_workers=14, pin_memory=True)
|
||||
val_loader = DataLoader(dataset=val_mnist_dataset, batch_size=batch_size, shuffle=True, num_workers=14, pin_memory=True)
|
||||
test_loader = DataLoader(dataset=test_mnist_dataset, batch_size=batch_size, shuffle=True, num_workers=14, pin_memory=True)
|
||||
|
||||
model = MNIST_CLS_Model(num_classes=10, dropout_rate=0.2).to(device)
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, betas=(0.9, 0.999), eps=1e-8, weight_decay=0)
|
||||
|
||||
early_stopping_patience = 5
|
||||
best_val_loss = float("inf")
|
||||
current_patience = 0
|
||||
|
||||
train_loss = list()
|
||||
test_acc = list()
|
||||
val_loss = list()
|
||||
for epoch in range(num_epochs):
|
||||
model.train()
|
||||
total_epoch_loss = 0
|
||||
for index, (images, targets) in tqdm(enumerate(train_loader), total=len(train_loader)):
|
||||
optimizer.zero_grad()
|
||||
|
||||
images = images.to(device)
|
||||
targets = targets.to(device)
|
||||
one_hot_targets = one_hot(targets, num_classes=num_classes).to(dtype=torch.float)
|
||||
|
||||
outputs = model(images)
|
||||
loss = criterion(outputs, one_hot_targets)
|
||||
total_epoch_loss += loss.item()
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
total_epoch_acc = 0
|
||||
for index, (image, targets) in tqdm(enumerate(test_loader), total=len(test_loader)):
|
||||
image = image.to(device)
|
||||
targets = targets.to(device)
|
||||
|
||||
outputs = model(image)
|
||||
pred = softmax(outputs, dim=1)
|
||||
total_epoch_acc += (pred.argmax(1) == targets).sum().item()
|
||||
avg_epoch_acc = total_epoch_acc / len(test_mnist_dataset)
|
||||
|
||||
val_total_epoch_loss = 0
|
||||
for index, (image, targets) in tqdm(enumerate(val_loader), total=len(test_loader)):
|
||||
image = image.to(device)
|
||||
targets = targets.to(device)
|
||||
one_hot_targets = one_hot(targets, num_classes=num_classes).to(dtype=torch.float)
|
||||
|
||||
outputs = model(image)
|
||||
loss = criterion(outputs, one_hot_targets)
|
||||
val_total_epoch_loss += loss.item()
|
||||
|
||||
print(
|
||||
f"Epoch [{epoch + 1}/{num_epochs}],",
|
||||
f"Train Loss: {total_epoch_loss:.10f},",
|
||||
f"Test Acc: {avg_epoch_acc * 100:.3f}%,",
|
||||
f"Val Loss: {val_total_epoch_loss:.10f}",
|
||||
)
|
||||
train_loss.append(total_epoch_loss)
|
||||
test_acc.append(avg_epoch_acc * 100)
|
||||
val_loss.append(val_total_epoch_loss)
|
||||
|
||||
if val_total_epoch_loss < best_val_loss:
|
||||
best_val_loss = val_total_epoch_loss
|
||||
current_patience = 0
|
||||
else:
|
||||
current_patience += 1
|
||||
if current_patience >= early_stopping_patience:
|
||||
print(f"Early stopping after {epoch + 1} epochs.")
|
||||
break
|
@ -1,8 +1,6 @@
|
||||
import time
|
||||
import numpy as np
|
||||
import torch
|
||||
from torch.nn.functional import *
|
||||
from torch.utils.data import Dataset, DataLoader
|
||||
from torch.utils.data import DataLoader
|
||||
from torch import nn
|
||||
from torchvision import datasets, transforms
|
||||
from tqdm import tqdm
|
||||
@ -10,120 +8,24 @@ from tqdm import tqdm
|
||||
import ipdb
|
||||
|
||||
|
||||
# 手动实现torch.nn.functional.one_hot
|
||||
def my_one_hot(indices: torch.Tensor, num_classes: int):
|
||||
one_hot_tensor = torch.zeros(len(indices), num_classes, dtype=torch.long).to(indices.device)
|
||||
one_hot_tensor.scatter_(1, indices.view(-1, 1), 1)
|
||||
return one_hot_tensor
|
||||
class MNIST_CLS_Model(nn.Module):
|
||||
def __init__(self, num_classes, dropout_rate=0.5):
|
||||
super().__init__()
|
||||
self.flatten = nn.Flatten()
|
||||
self.fc1 = nn.Linear(in_features=28 * 28, out_features=1024)
|
||||
self.fc2 = nn.Linear(in_features=1024, out_features=num_classes)
|
||||
self.dropout = nn.Dropout(p=dropout_rate)
|
||||
|
||||
|
||||
# 手动实现torch.nn.functional.softmax
|
||||
def my_softmax(predictions: torch.Tensor, dim: int):
|
||||
max_values = torch.max(predictions, dim=dim, keepdim=True).values
|
||||
exp_values = torch.exp(predictions - max_values)
|
||||
softmax_output = exp_values / torch.sum(exp_values, dim=dim, keepdim=True)
|
||||
return softmax_output
|
||||
|
||||
# 手动实现torch.nn.Linear
|
||||
class My_Linear:
|
||||
def __init__(self, in_features: int, out_features: int):
|
||||
self.weight = torch.normal(mean=0.001, std=0.5, size=(out_features, in_features), requires_grad=True, dtype=torch.float32)
|
||||
self.bias = torch.normal(mean=0.001, std=0.5, size=(1,), requires_grad=True, dtype=torch.float32)
|
||||
self.params = [self.weight, self.bias]
|
||||
|
||||
def __call__(self, x):
|
||||
return self.forward(x)
|
||||
|
||||
def forward(self, x):
|
||||
x = torch.matmul(x, self.weight.T) + self.bias
|
||||
def forward(self, x: torch.Tensor):
|
||||
x = self.flatten(x)
|
||||
x = torch.relu(self.fc1(x))
|
||||
x = self.dropout(x)
|
||||
x = self.fc2(x)
|
||||
return x
|
||||
|
||||
def to(self, device: str):
|
||||
for param in self.params:
|
||||
param.data = param.data.to(device=device)
|
||||
return self
|
||||
|
||||
def parameters(self):
|
||||
return self.params
|
||||
|
||||
|
||||
# 手动实现torch.nn.Flatten
|
||||
class My_Flatten:
|
||||
def __call__(self, x: torch.Tensor):
|
||||
x = x.view(x.shape[0], -1)
|
||||
return x
|
||||
|
||||
|
||||
# 手动实现torch.nn.ReLU
|
||||
class My_ReLU():
|
||||
def __call__(self, x: torch.Tensor):
|
||||
x = torch.max(x, torch.tensor(0.0, device=x.device))
|
||||
return x
|
||||
|
||||
|
||||
# 手动实现torch.nn.Sigmoid
|
||||
class My_Sigmoid():
|
||||
def __call__(self, x: torch.Tensor):
|
||||
x = 1. / (1. + torch.exp(-x))
|
||||
return x
|
||||
|
||||
|
||||
# 手动实现torch.nn.BCELoss
|
||||
class My_BCELoss:
|
||||
def __call__(self, prediction: torch.Tensor, target: torch.Tensor):
|
||||
loss = -torch.mean(target * torch.log(prediction) + (1 - target) * torch.log(1 - prediction))
|
||||
return loss
|
||||
|
||||
|
||||
# 手动实现torch.nn.CrossEntropyLoss
|
||||
class My_CrossEntropyLoss:
|
||||
def __call__(self, predictions: torch.Tensor, targets: torch.Tensor):
|
||||
max_values = torch.max(predictions, dim=1, keepdim=True).values
|
||||
exp_values = torch.exp(predictions - max_values)
|
||||
softmax_output = exp_values / torch.sum(exp_values, dim=1, keepdim=True)
|
||||
|
||||
log_probs = torch.log(softmax_output)
|
||||
nll_loss = -torch.sum(targets * log_probs, dim=1)
|
||||
average_loss = torch.mean(nll_loss)
|
||||
return average_loss
|
||||
|
||||
|
||||
# 手动实现损失函数
|
||||
class My_optimizer:
|
||||
def __init__(self, params: list[torch.Tensor], lr: float):
|
||||
self.params = params
|
||||
self.lr = lr
|
||||
|
||||
def step(self):
|
||||
with torch.no_grad():
|
||||
for param in self.params:
|
||||
param.data = param.data - self.lr * param.grad.data
|
||||
|
||||
def zero_grad(self):
|
||||
for param in self.params:
|
||||
if param.grad is not None:
|
||||
param.grad.data = torch.zeros_like(param.grad.data)
|
||||
|
||||
# 手动实现torch.optim.SGD
|
||||
class My_SGD:
|
||||
def __init__(self, params: list[torch.Tensor], lr: float, weight_decay=0):
|
||||
self.params = params
|
||||
self.lr = lr
|
||||
self.weight_decay = weight_decay
|
||||
|
||||
def step(self):
|
||||
with torch.no_grad():
|
||||
for param in self.params:
|
||||
param.data = param.data - self.lr * param.grad.data
|
||||
|
||||
def zero_grad(self):
|
||||
for param in self.params:
|
||||
if param.grad is not None:
|
||||
param.grad.data = torch.zeros_like(param.grad.data)
|
||||
|
||||
|
||||
def train_MNIST_CLS(model, optimizer, num_epochs):
|
||||
batch_size = 512
|
||||
batch_size = 8192
|
||||
num_classes = 10
|
||||
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
||||
|
||||
@ -133,8 +35,12 @@ def train_MNIST_CLS(model, optimizer, num_epochs):
|
||||
transforms.Normalize((0.5,), (0.5,)),
|
||||
]
|
||||
)
|
||||
train_mnist_dataset = datasets.MNIST(root="../dataset", train=True, transform=transform, download=True)
|
||||
test_mnist_dataset = datasets.MNIST(root="../dataset", train=False, transform=transform, download=True)
|
||||
train_mnist_dataset = datasets.MNIST(
|
||||
root="../dataset", train=True, transform=transform, download=True
|
||||
)
|
||||
test_mnist_dataset = datasets.MNIST(
|
||||
root="../dataset", train=False, transform=transform, download=True
|
||||
)
|
||||
train_loader = DataLoader(
|
||||
dataset=train_mnist_dataset,
|
||||
batch_size=batch_size,
|
||||
@ -152,13 +58,12 @@ def train_MNIST_CLS(model, optimizer, num_epochs):
|
||||
|
||||
model = model.to(device)
|
||||
criterion = nn.CrossEntropyLoss()
|
||||
|
||||
|
||||
train_loss = list()
|
||||
test_acc = list()
|
||||
for epoch in range(num_epochs):
|
||||
model.train()
|
||||
total_epoch_loss = 0
|
||||
start_time = time.time()
|
||||
for index, (images, targets) in tqdm(
|
||||
enumerate(train_loader), total=len(train_loader)
|
||||
):
|
||||
@ -166,7 +71,9 @@ def train_MNIST_CLS(model, optimizer, num_epochs):
|
||||
|
||||
images = images.to(device)
|
||||
targets = targets.to(device)
|
||||
one_hot_targets = one_hot(targets, num_classes=num_classes).to(dtype=torch.float)
|
||||
one_hot_targets = one_hot(targets, num_classes=num_classes).to(
|
||||
dtype=torch.float
|
||||
)
|
||||
|
||||
outputs = model(images)
|
||||
loss = criterion(outputs, one_hot_targets)
|
||||
@ -175,34 +82,25 @@ def train_MNIST_CLS(model, optimizer, num_epochs):
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
|
||||
end_time = time.time()
|
||||
train_time = end_time - start_time
|
||||
|
||||
model.eval()
|
||||
with torch.no_grad():
|
||||
total_epoch_acc = 0
|
||||
start_time = time.time()
|
||||
for index, (image, targets) in tqdm(
|
||||
enumerate(test_loader), total=len(test_loader)
|
||||
):
|
||||
image = image.to(device)
|
||||
targets = targets.to(device)
|
||||
|
||||
|
||||
outputs = model(image)
|
||||
pred = softmax(outputs, dim=1)
|
||||
total_epoch_acc += (pred.argmax(1) == targets).sum().item()
|
||||
|
||||
end_time = time.time()
|
||||
test_time = end_time - start_time
|
||||
|
||||
|
||||
avg_epoch_acc = total_epoch_acc / len(test_mnist_dataset)
|
||||
print(
|
||||
f"Epoch [{epoch + 1}/{num_epochs}],",
|
||||
f"Train Loss: {total_epoch_loss:.10f},",
|
||||
f"Used Time: {train_time * 1000:.3f}ms,",
|
||||
f"Test Acc: {avg_epoch_acc * 100:.3f}%,",
|
||||
f"Used Time: {test_time * 1000:.3f}ms",
|
||||
)
|
||||
train_loss.append(total_epoch_loss)
|
||||
test_acc.append(avg_epoch_acc * 100)
|
||||
return train_loss, test_acc
|
||||
return train_loss, test_acc
|
||||
|
File diff suppressed because one or more lines are too long
Loading…
x
Reference in New Issue
Block a user