15 lines
558 B
Python
15 lines
558 B
Python
import numpy as np
|
|
import torch
|
|
from utils import *
|
|
|
|
|
|
if __name__ == "__main__":
|
|
learning_rate = 8e-2
|
|
num_epochs = 101
|
|
color = ["blue", "green", "orange", "purple"]
|
|
for i in np.arange(4):
|
|
weight_decay_rate = i / 4 * 0.01
|
|
model = MNIST_CLS_Model(num_classes=10, dropout_rate=0)
|
|
optimizer = torch.optim.SGD(model.parameters(), lr=learning_rate, weight_decay=weight_decay_rate)
|
|
print(f"weight_decay_rate={weight_decay_rate}")
|
|
train_loss, test_acc = train_MNIST_CLS(model, optimizer, num_epochs=num_epochs) |