2023-11-20 23:11:01 +08:00

63 lines
2.2 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import torch
from utils import *
class My_RMSprop:
def __init__(self, params: list[torch.Tensor], lr=1e-2, alpha=0.99, eps=1e-8):
self.params = params
self.lr = lr
self.alpha = alpha
self.eps = eps
self.square_avg = [torch.zeros_like(param.data) for param in params]
def step(self):
with torch.no_grad():
for index, param in enumerate(self.params):
if param.grad is not None:
self.square_avg[index] = self.alpha * self.square_avg[index] + (1 - self.alpha) * param.grad ** 2
param.data = param.data - self.lr * param.grad / torch.sqrt(self.square_avg[index] + self.eps)
def zero_grad(self):
for param in self.params:
if param.grad is not None:
param.grad.data = torch.zeros_like(param.grad.data)
if __name__ == "__main__":
params1 = torch.tensor([[1.0, 2.0]], requires_grad=True)
params2 = torch.tensor([[1.0, 2.0]], requires_grad=True)
my_sgd = My_RMSprop(params=[params1], lr=1, alpha=0.5, eps=1e-8)
optim_sgd = torch.optim.RMSprop(params=[params2], lr=1, alpha=0.5, eps=1e-8)
my_sgd.zero_grad()
optim_sgd.zero_grad()
loss1 = 2 * params1.sum()
loss2 = 2 * params2.sum()
# 偏导为2
loss1.backward()
loss2.backward()
my_sgd.step()
optim_sgd.step()
# s = alpha * s + (1-alpha) * grad^2 = 0.5 * 0 + (1-0.5) * 2^2 = 2
# w = w - lr * grad * (s + eps)^0.5
# w[0] = 1 - 1 * 2 / (2 + 1e-8)^0.5 ~= -0.41
# w[1] = 2 - 1 * 2 / (2 + 1e-8)^0.5 ~= -0.59
print("My_RMSprop第1次反向传播结果\n", params1.data)
print("torch.optim.RMSprop第1次反向传播结果\n", params2.data)
my_sgd.zero_grad()
optim_sgd.zero_grad()
loss1 = -3 * params1.sum()
loss2 = -3 * params2.sum()
loss1.backward()
loss2.backward()
my_sgd.step()
optim_sgd.step()
# s = alpha * s + (1-alpha) * grad^2 = 0.5 * 2 + (1-0.5) * (-3)^2 = 5.5
# w - lr * grad * (s + eps)^0.5
# w[0] = -0.41 - 1 * -3 / (5.5 + 1e-8)^0.5 ~= 0.87
# w[1] = 0.59 - 1 * -3 / (5.5 + 1e-8)^0.5 ~= 1.86
print("My_RMSprop第2次反向传播结果\n", params1.data)
print("torch.optim.RMSprop第2次反向传播结果\n", params2.data)