2023-10-24 20:15:43 +08:00

103 lines
3.2 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import time
import numpy as np
import torch
from torch.nn.functional import *
from torch.utils.data import Dataset, DataLoader
from torch import nn
from torchvision import datasets, transforms
from tqdm import tqdm
from utils import *
import ipdb
class Model_4_1(nn.Module):
def __init__(self, num_classes):
super().__init__()
self.flatten = nn.Flatten()
self.fc1 = nn.Linear(in_features=28 * 28, out_features=512)
self.fc2 = nn.Linear(in_features=512, out_features=num_classes)
self.activate_fn = leaky_relu
def forward(self, x: torch.Tensor):
x = self.flatten(x)
x = self.fc1(x)
x = self.activate_fn(x)
x = self.fc2(x)
x = self.activate_fn(x)
return x
class Model_4_2(nn.Module):
def __init__(self, num_classes):
super().__init__()
self.flatten = nn.Flatten()
self.fc1 = nn.Linear(in_features=28 * 28, out_features=1024)
self.fc2 = nn.Linear(in_features=1024, out_features=num_classes)
self.activate_fn = leaky_relu
def forward(self, x: torch.Tensor):
x = self.flatten(x)
x = self.fc1(x)
x = self.activate_fn(x)
x = self.fc2(x)
x = self.activate_fn(x)
return x
class Model_4_3(nn.Module):
def __init__(self, num_classes):
super().__init__()
self.flatten = nn.Flatten()
self.fc1 = nn.Linear(in_features=28 * 28, out_features=512)
self.fc2 = nn.Linear(in_features=512, out_features=512)
self.fc3 = nn.Linear(in_features=512, out_features=num_classes)
self.activate_fn = leaky_relu
def forward(self, x: torch.Tensor):
x = self.flatten(x)
x = self.fc1(x)
x = self.activate_fn(x)
x = self.fc2(x)
x = self.activate_fn(x)
x = self.fc3(x)
x = self.activate_fn(x)
return x
class Model_4_4(nn.Module):
def __init__(self, num_classes):
super().__init__()
self.flatten = nn.Flatten()
self.fc1 = nn.Linear(in_features=28 * 28, out_features=1024)
self.fc2 = nn.Linear(in_features=1024, out_features=1024)
self.fc3 = nn.Linear(in_features=1024, out_features=num_classes)
self.activate_fn = leaky_relu
def forward(self, x: torch.Tensor):
x = self.flatten(x)
x = self.fc1(x)
x = self.activate_fn(x)
x = self.fc2(x)
x = self.activate_fn(x)
x = self.fc3(x)
x = self.activate_fn(x)
return x
if __name__ == "__main__":
print("模型1开始训练hidden_size=512hidden_layer=1 ")
train_loss_4_1, test_acc_4_1 = train_MNIST_CLS(Model=Model_4_1) # hidden_size=512, hidden_layer=1
print("模型2开始训练hidden_size=1024hidden_layer=1 ")
train_loss_4_2, test_acc_4_2 = train_MNIST_CLS(Model=Model_4_2) # hidden_size=1024, hidden_layer=1
print("模型3开始训练hidden_size=512hidden_layer=2 ")
train_loss_4_3, test_acc_4_3 = train_MNIST_CLS(Model=Model_4_3) # hidden_size=512, hidden_layer=2
print("模型4开始训练hidden_size=1024hidden_layer=2 ")
train_loss_4_4, test_acc_4_4 = train_MNIST_CLS(Model=Model_4_4) # hidden_size=1024, hidden_layer=2