Computer_Speech_Technology/Lab/Lab3/source/柯劲帆_21281280_实验3.md
2024-09-05 12:45:40 +08:00

14 KiB
Raw Blame History

实验报告

课程名称:计算机语音技术
实验题目:实验3
学号:21281280
姓名:柯劲帆
班级:物联网2101班
指导老师:朱维彬
报告日期:2023年10月13日

[TOC]


1. 自相关系数计算和基音周期候选点集

  • 基于自相关系数AC的局部极大值构成基音周期候选点集通过预设基频范围进行初步筛选

1.1. 计算自相关系数

自相关算法能够体现语音信号的时域重复性。

基于某帧语音信号的自相关函数的在某一时延$t$(单位为采样点)的大小,可以推断该帧语音信号的基音周期是$t$的可能性:$t$点自相关系数越大,基音周期是$t$的概率越大;反之亦然。

因此,可以通过计算语音信号中各帧的自相关函数来推断各帧的基音周期。

自相关函数的计算方法:


\hat{R}_n\left(k\right) = \sum_{m=0}^{N-1}x\left(n+m\right)x\left(n+m+k\right)

其中$\hat{R}_n\left(k\right)$是第$k$帧的自相关函数,其中$0\le k < N$$N$为语音的分帧数。

代码实现如下:

# 读取音频文件
filename = "./tang1.wav"
sample_rate, sound_array = scipy.io.wavfile.read(filename)
sound_array = sound_array.T[0, :] if sound_array.ndim != 1 else sound_array
sound_array = sound_array / np.max(np.abs(sound_array))  # 归一化

frame_length = int(sample_rate * 0.01)
num_frames = len(sound_array) // frame_length
autocorrelation = np.zeros((num_frames, frame_length))	# 每帧的自相关函数
autocorrelation_of_candidates = np.zeros((num_frames, frame_length))

for n in range(num_frames):
    frame = sound_array[n * frame_length: (n + 1) * frame_length]	# 提取单帧
    autocorrelation[n, :] = scipy.signal.correlate(frame, frame, mode='full')[frame_length - 1:]

代码的逻辑为:

  1. 读取音频文件并进行预处理;
  2. 设置帧长和分帧数,以及初始化自相关函数的记录变量;
  3. 逐帧进行自相关计算。

1.2. 选取基音周期候选点集

得到自相关函数autocorrelation后,下一步就是取各帧的局部极大值构成基音周期候选点集。

但是在实际实验中局部极大值的提取较为困难要么就是自相关函数波动严重局部极大值非常多要么就是自相关函数单调变化或平滑变化局部极大值几乎不存在。由于后续的DP算法需要每一帧都有基音周期候选点集所以局部极大值数量少会严重影响算法的稳定性。

因此,考虑到一帧的长度不大,我将符合人声基频范围的所有基音周期都视为候选点。那么基音周期候选点的范围限制为:


\frac{1}{min\times \frac{1}{sample \space rate}} \le 80\rm{Hz}\Longrightarrow min \ge \frac{sample \space rate}{80\rm{Hz}}

同理,


\frac{1}{max\times \frac{1}{sample \space rate}} \ge 400\rm{Hz}\Longrightarrow max \le \frac{sample \space rate}{400\rm{Hz}}

综上,基音周期候选点的范围为


\left [\frac{sample \space rate}{400\rm{Hz}}, \frac{sample \space rate}{80\rm{Hz}}\right ]

为了让DP算法只选择在阈值内的基音周期即不选择阈值外的基音周期所以将阈值外的自相关系数置为一个较小的数从而让DP算法选择阈值外基音周期的代价变高。

代码实现如下:

min_peak_threshold = min(sample_rate // 400, frame_length)
max_peak_threshold = min(sample_rate // 80, frame_length)

autocorrelation_of_candidates = autocorrelation
autocorrelation_of_candidates[:, 0:min_peak_threshold] = np.min(autocorrelation) - 5.
autocorrelation_of_candidates[:, max_peak_threshold:] = np.min(autocorrelation) - 5.

最终,tang1.wav的自相关函数计算结果如下所示,

p1

$x$轴为帧,$y$轴为候选点,$z$轴为自相关函数。不在人声基频范围内的点的自相关系数被置为一个很低的数值(蓝色区域所示)。

2. 动态规划DP算法

  • 采用动态规划DP算法通过代价函数CostFunction() 涉及目标、转移代价,利用帧同步搜索代价最小路径,检测出基频

DP算法的步骤如下

  1. 初始化第$1$帧的代价函数

    
    CostF\left(1, i\right) = Dist\left(ac\left({Can}_{1}\left(i\right)\right)\right) \left ( i=1, 2, \dots, L \right )
    

    其中:

    • $CostF\left(n, i\right)$表示第$n$帧的第$i$个基音周期候选点的累计代价;
    • $Dist\left(\right)$为距离测度;
    • $ac\left(\right)$表示自相关函数序列;
    • ${Can}_{n}\left(i\right)$表示第$n$帧的第$i$个基音周期候选点;
    • $L$表示候选点数。

    我将$Dist\left(\right)$的计算设置为

    
    Dist\left(ac\left({Can}_{1}\left(i\right)\right)\right) = - \operatorname{normalize} \left(ac\left({Can}_{1}\left(i\right)\right)\right) \times 2 \times10^6
    

    其中$\operatorname{normalize} \left(\right)$表示归一化,这是为了控制不同的音频计算得到的不同自相关系数在固定的范围。

    代码实现如下:

    costF = np.zeros((num_frames, frame_length))
    path = np.zeros((num_frames, frame_length))
    dist = -(autocorrelation_of_candidates - np.min(autocorrelation_of_candidates)) / (np.max(autocorrelation_of_candidates) - np.min(autocorrelation_of_candidates)) * 2e3
    
    costF[0, :] = dist[0, :]
    

    代码声明了代价记录变量和转移路径记录变量,然后初始化第$1$帧的代价函数。

  2. 计算每帧的代价函数

    
    \begin{array}{c}
    CostF\left(n+1, j\right) = \underset{i}{\operatorname{min}}\left(CostF\left(n, i\right)+CostT\left(n, i, j\right)\right)+CostG\left(n+1, j\right)\\
    Path = \underset{i}{\operatorname{argmin}}\left(CostF\left(n, i\right)+CostT\left(n, i, j\right)\right)\left ( i,j=1, 2, \dots, L \right )
    \end{array}
    

    其中:

    • $CostT\left(n, i, j\right)$表示转移代价:第$n$帧中第$i$个候选点的基频与第$n+1$帧中第$j$个候选点的基频之差,并进行归一化;
    • $CostG\left(n+1, j\right)$为目标代价:等于$Dist\left(ac\left({Can}_{n+1}\left(j\right)\right)\right)$的值。

    这一步是要计算得到的结果满足两个评价指标的权衡:

    • 自相关系数尽可能大,即基音周期正确概率尽可能大;
    • 基频的变化尽可能小,即基音周期的变化尽可能小。

    这两个指标都进行了归一化操作,即都在$\left[0, 1\right]$之间,只需要调整它们的权重即可人工控制权衡的决策。这里,我将自相关系数相关的权重设置为$2 \times10^6$,基音周期变化的权重设置为$1$。

    代码实现如下:

    for n in range(num_frames - 1):
        for j in range(min_peak_threshold, max_peak_threshold):
            costT = np.abs(sample_rate / np.arange(frame_length)[1:] - sample_rate / j)
            costT = (costT - np.min(costT)) / (np.max(costT) - np.min(costT))
            costG = dist[n + 1, j]
            costF[n + 1, j] = costG + np.min(costF[n, 1:] + costT)
            path[n + 1, j] = np.argmin(costF[n, 1:] + costT) + 1
    

    代码循环计算了每帧的代价函数。

  3. 确定最优路径

    
    \hat{l}_N=\underset{j}{\operatorname{argmin}}\left(CostF\left(N, j\right)\right)
    

    即找到累计代价最小的结束帧作为预测结果的结束帧。

    代码实现如下:

    l_hat = np.zeros(num_frames, dtype=np.int32)
    l_hat[num_frames - 1] = np.argmin(costF[num_frames - 1, 1:]) + 1
    
  4. 路径回溯

    
    \begin{array}{c}
    \hat{l}_n=Path\left(n+1, \hat{l}_{n+1}\right)\\
    F0\left [ n \right ]  = F0\left ( {Can}_{n}\left(\hat{l}_n\right) \right ) 
    \end{array}
    

    即从后一帧往前推出使得代价最小的前一帧(代价最小的转移路径已经在Path变量中记录),然后计算出该帧的基频。

    由候选点计算基频的公式为:

    
    F0\left ({Can}_{n}\left(i\right) \right ) = \frac{sample \space rate}{{Can}_{n}\left(i\right)}
    

    代码实现如下:

    for n in range(num_frames - 2, -1, -1):
        l_hat[n] = path[n + 1, l_hat[n + 1]]
    
    f0 = sample_rate / l_hat
    

运行以上代码,并画出语音信号及基频变化如下:

p2

使用Praat进行基频检测预测基频如下

p3

预测结果相近,表明算法基本正确。

3. 绘制图像与分析

  • 自行录制一段连续语音发音,对检测结果进行分析,针对观察到的问题优化算法

使用实验1中录制的“wo3 jiao4 ke1 jing4 fan1”作为测试音频进行基频分析。

自相关函数如下:

p4

发现自相关函数比单音节的tang1的更加复杂,但是可以明显发现五个发音之间由四个空隙隔开——在这四个空隙中,自相关函数值相对较低,印证了发音间隙基频变化大的事实。

使用过DP算法计算后画出基频曲线

p5

虽然可以大致判断基频变化情况但是不明显。分析发现基频变化太大了因此需要调整转移代价的权重增加基频转移对DP算法决策的惩罚。

因此,将

dist = -autocorrelation_of_candidates * 2e3

修改为

dist = -autocorrelation_of_candidates * 1e1

其余不变。再次运行并绘图:

p6

此时,基频更加集中,变化趋势较为明显。

与Praat的检测结果进行比对

p7

有较高的相似性,说明算法有效。

对于算法的优化调整,我只想到调整目标代价和转移代价两者之间的平衡权重进行优化。这个优化方法只能靠手动且经验性较强,效果不佳。

4. 附录

完整算法及绘图代码:

import scipy
import numpy as np
import matplotlib.pyplot as plt

# 读取音频文件
filename = "./tang1.wav"
sample_rate, sound_array = scipy.io.wavfile.read(filename)
sound_array = sound_array.T[0, :] if sound_array.ndim != 1 else sound_array
sound_array = sound_array / np.max(np.abs(sound_array))  # 归一化

frame_length = int(sample_rate * 0.01)
num_frames = len(sound_array) // frame_length
autocorrelation = np.zeros((num_frames, frame_length))
autocorrelation_of_candidates = np.zeros((num_frames, frame_length))

# 基频阈值为80-400Hz则基音周期即延迟t最小为sample_rate/400最大为sample_rate/80
min_peak_threshold = min(sample_rate // 400, frame_length)
max_peak_threshold = min(sample_rate // 80, frame_length)
for n in range(num_frames):
    frame = sound_array[n * frame_length: (n + 1) * frame_length]
    autocorrelation[n, :] = scipy.signal.correlate(frame, frame, mode='full')[frame_length - 1:]
# 本应该使用峰值的延迟作为基音周期的候选值,但是发现峰值(局部极大值)并不好判断,同时一帧内的点数不多,因此将阈值内的所有点都作为候选点
# 那么将不在阈值内的自相关系数置为一个非常小的数,从而不让算法选择不在阈值内的基音周期
autocorrelation_of_candidates = autocorrelation
autocorrelation_of_candidates[:, 0:min_peak_threshold] = np.min(autocorrelation) - 10.
autocorrelation_of_candidates[:, max_peak_threshold:] = np.min(autocorrelation) - 10.

x, y = np.meshgrid(np.arange(frame_length), np.arange(num_frames))
x, y, z = x.flatten(), y.flatten(), autocorrelation_of_candidates.flatten()
fig = plt.figure()
ac_3d = fig.add_subplot(111, projection='3d')
sc = ac_3d.scatter(x, y, z, c=z, cmap='plasma')
ac_3d.set_xlabel('Candidates')
ac_3d.set_ylabel('Frame')
ac_3d.set_zlabel('AC Value')
plt.colorbar(sc)
plt.show()


costF = np.zeros((num_frames, frame_length))
path = np.zeros((num_frames, frame_length))
dist = -(autocorrelation_of_candidates - np.min(autocorrelation_of_candidates)) / (np.max(autocorrelation_of_candidates) - np.min(autocorrelation_of_candidates)) * 1e1

costF[0, :] = dist[0, :]

for n in range(num_frames - 1):
    for j in range(min_peak_threshold, max_peak_threshold):
        # f0 = sample_rate / candidate
        costT = np.abs(sample_rate / np.arange(frame_length)[1:] - sample_rate / j)
        costT = (costT - np.min(costT)) / (np.max(costT) - np.min(costT))	# 归一化
        costG = dist[n + 1, j]
        costF[n + 1, j] = costG + np.min(costF[n, 1:] + costT)
        path[n + 1, j] = np.argmin(costF[n, 1:] + costT) + 1

l_hat = np.zeros(num_frames, dtype=np.int32)
l_hat[num_frames - 1] = np.argmin(costF[num_frames - 1, 1:]) + 1

for n in range(num_frames - 2, -1, -1):
    l_hat[n] = path[n + 1, l_hat[n + 1]]

f0 = sample_rate / l_hat

plt.figure(figsize=(15, 6))
plt.subplot(2, 1, 1)
plt.plot(sound_array)
plt.ylabel("Signal")
plt.subplot(2, 1, 2)
plt.ylim(0, 500)
x = frame_length * np.arange(num_frames)
y = f0
X_Smooth = np.linspace(x.min(), x.max(), 300)
Y_Smooth = scipy.interpolate.make_interp_spline(x, y)(X_Smooth)
plt.plot(X_Smooth, Y_Smooth, color="orange")
plt.plot(x, y, "o")
plt.ylabel("Pitch (Hz)")
plt.show()