50 lines
1.7 KiB
Python
50 lines
1.7 KiB
Python
import torch
|
||
from utils import *
|
||
|
||
|
||
class My_SGD:
|
||
def __init__(self, params: list[torch.Tensor], lr: float, weight_decay=0.0):
|
||
self.params = params
|
||
self.lr = lr
|
||
self.weight_decay = weight_decay
|
||
|
||
def step(self):
|
||
with torch.no_grad():
|
||
for param in self.params:
|
||
if param.grad is not None:
|
||
if len(param.data.shape) > 1:
|
||
param.data = param.data - self.lr * (param.grad + self.weight_decay * param.data)
|
||
else:
|
||
param.data = param.data - self.lr * param.grad
|
||
|
||
def zero_grad(self):
|
||
for param in self.params:
|
||
if param.grad is not None:
|
||
param.grad.data = torch.zeros_like(param.grad.data)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
params1 = torch.tensor([[1.0, 2.0]], requires_grad=True)
|
||
params2 = torch.tensor([[1.0, 2.0]], requires_grad=True)
|
||
|
||
my_sgd = My_SGD(params=[params1], lr=0.5, weight_decay=0.1)
|
||
optim_sgd = torch.optim.SGD(params=[params2], lr=0.5, weight_decay=0.1)
|
||
my_sgd.zero_grad()
|
||
optim_sgd.zero_grad()
|
||
|
||
loss1 = 2 * params1.sum()
|
||
loss2 = 2 * params2.sum()
|
||
# 偏导为2
|
||
loss1.backward()
|
||
loss2.backward()
|
||
print("params1的梯度为:\n", params1.grad.data)
|
||
print("params2的梯度为:\n", params2.grad.data)
|
||
|
||
my_sgd.step()
|
||
optim_sgd.step()
|
||
# 结果为:w - lr * grad - lr * weight_decay_rate * w
|
||
# w[0] = 1 - 0.5 * 2 - 0.5 * 0.1 * 1 = -0.0500
|
||
# w[1] = 2 - 0.5 * 2 - 0.5 * 0.1 * 2 = 0.9000
|
||
print("经过L_2正则化后的My_SGD反向传播结果:\n", params1.data)
|
||
print("经过L_2正则化后的torch.optim.SGD反向传播结果:\n", params2.data)
|